. . . Азотирование — это термохимическое упрочение поверхности стальных и чугунных деталей, при которой насыщают азотом. Поверхностный слой изделия, насыщенный азотом, имеет в своём составе растворённые нитриды и получает крайне высокую микротвёрдость, значительную устойчивость к коррозии и улучшенные триботехнические свойства (уменьшение коэффициента трения). По уровню получаемой микротвёрдости азотирование превосходит цементацию и нитроцементацию.
Так же — детали подвергнутые азотированию держат свою повышенную прочность при нагреве до температуры 550–600°С. Для сравнения- после цементации твердость поверхностного слоя может начать ухудшаться при нагреве детали уже свыше 225°С.
В итоге можно четко констатировать — что прочностные характеристики поверхностного слоя стали после азотирования в 1,5–2 раза выше, чем после закалки или цементации.
Именно поэтому уже более 60 лет такие ответственные и подвергаемые жесткому нагреву детали ДВС как впускные и выпускные тарельчатые клапана обязательно подвергают азотированию.
. . . . Другой важной чертой процесса азотирования стали является то, что при этом процессе детали нагревают лишь до 500-550°С. Такой достаточно щадящий процесс термического воздействия приводит к тому, что в даталях практически не возникает термических напряжений и последующих деформаций. Именно поэтому азотированию можно подвергать детали уже изготовленные «точно в размер». В отличие от азотирования, процессы цементирования или закалки предполагают нагрев до 850-950 °С, что приводит к серьезным последующим поводкам деталей (изменению их геометрии за счет появления внутренних напряжений) и необходимости далее шлифовать такие изделия. А шлифовать термоупроченные детали с высокой поверхностной твердостью- дело очень трудоемкое и дорогое….
Особенно такой щадящий режим термовоздействия на азотируемые детали характерен для передовой методики ионно-плазменного азотирования, где нагрев идет более щадящий, чем при азотировании в газовой среде аммиака.
Поверхностная твердость обработанных сталей типа 38Х2МЮА достигает величины в 63-65 HRC (твердость по Роквеллу), стали 40Х- до 50-52 HRC .
*Для справки нетермообработанная твердость поверхности конструкционной стали находится в значениях 25-30 HRC , а твердость поверхности напильника примерно 65-70 HRC .
Глубина возникающего поверхностного термоупроченного слоя составляет от 0,2 до 0,6 мм в зависимости от типа стали.

Детали после процесса азотирования. Цвет изменился- нитриды железа обладают специфическим цветом.
КАКИЕ ДЕТАЛИ ПОДВЕРГАЮТ АЗОТИРОВАНИЮ?
. . . Азотированию подвергают прежде всего такие детали различных машин и механизмов, которые подвергаются повышенному износу за счет усиленного трения в условиях значительных температур.
ШНЕКОВЫЕ ПАРЫ:
… Например — шнеки и филеры (пилотезы) шнековых прессов для выдавливания с дальнейшим формованием пластиковых изделий, либо шнеков при производстве евродров из опилок-цепы, либо шнековых прессов для отжима растительного масла, и прочих похожих шнековых прессов.
Например — большая технологическая проблема шнеков для формовки и прессования евродров из цепы и опила — это очень быстрый износ формующей пары «оконечник шнека- фильера». Особенно- если формовке подвергается щепа с лесосеки, загрязненная песком, глиной и почвой, то поверхности формующей пары дешевых шнековых прессов изнашиваются за 4-6 дней, а «фирменных» прессов держатся не более месяца… После этого шнек практически уже не может выдавать продукт нормального качества и нужной геометрии…
После реставрации шнека и азотирования его восстановленной поверхности такая деталь может служить в районе полугода при работе на замусоренной песком и глиной щепе, а на нормальной сырье такой шнек работает не менее 2-х лет…
ПУАНСОНЫ И ШТАМПЫ:
Так же обязательно нужно термоупрочивать поверхность различных штампов и пуансонов. При такой обработки срок их службы так же увеличивается в разы.
ДЕТАЛИ ДВС:
….. Крайне необходимо подвергать азотированию различные элементы и детали двигателей внутреннего сгорания. Так подвергнутый азотированию коленвалы и распредвалы увеличивают свой ресурс в разы, а подвергнутые азотированию гильзы цилиндров и стальные поршни — буквально ходят без видимого износа десятилетиями…
* * *
. . . Главное преимущество ионно — плазменного азотирования перед старыми технологиями газового диффузионного азотирования в том, что теперь в предварительно созданный технический вакуум вводится строго дозированные порции технологических газов- азота, водорода и аргона. Такое точное дозирование и порционное введение строго по нужному моменту во времени позволяет тонко регулировать и управлять процессом азотирования. А это в свою очередь позволяет обеспечивать точный и уверенный процесс появления слоя твердых нитридов на поверхности детали из стали, чугуна или титана.
. . . Азотирование титана — это не частые заказы, но титан так же подвергается поверхностному упрочению с помощью технологии азотирования, и титановые детали так же получают твердую и износостойкую поверхность, с повышенными термостойкими свойствами.

Вид в камеру в процессе азотирования деталей. На поверхности- коронный разряд.
КРАТКИЙ ЭКСКУРС В ИСТОРИЮ ВОЗНИКНОВЕНИЯ И СУТЬ ТЕХНОЛОГИЙ ТЕРМОУПРОЧИВАНИЕ СТАЛИ
….. Со времен создания стали люди всегда пытались увеличить ее твердость и износостойкость. Т.е. улучшить эксплуатационные свойства. Первыми способами «укрепления стали» — была закалка, когда после сильного нагрева, раскаленную до желтого свечения в горне с углем сталь, окунали в воду. От такого резкого перепада температур сталь меняла свой кристаллический порядок, и становилась прочнее. Но вот беда- от такого «жесткого» термического перепада температур в стали накапливались термические напряжения (разные по разным линиям сечения) и эти напряжения потихоньку начинали «выползать на поверхность», от чего форма детали начинала несколько меняться. Появлялись так называемые термические искажения ( поводки) размеров. Чтобы избавиться от них, начали применять отпуск стали, что частично уменьшало твердость стали, но и уменьшало нарушение геометрии готовой детали. Закалка относится чисто к термическим способам упрочнения стали – т.е. к термообработке.
….. Закалка что-то делало со сталью, но технологи и машиностроители хотели добиться большего. Поэтому начали появляться термо-химические способы упрочнения стали. Первым таким способом было цементирование стали. Оно в первом своем варианте заключалось в том, что детали клали в стальные ящики, заполненные углем и эти ящики размещали в печах. Затем раскаляли до температуры 800-900 градусов и выдерживали от суток до двух. Потом медленно остужали. В раскаленном угле и стали на границе их соприкосновения происходила диффузия и поверхностный слой стали насыщался соединениями железа и углерода. А так как эти соединения (цементиты или карбиды железа) обладают высокой прочностью, поэтому поверхностный слой стали тоже становился очень твердым и износостойким. Только вот беда — при температуре обработки в 800-900 градусов снова появлялись термические напряжения и вновь после обработки детали «вело»- и точные детали таким образов трудно было обрабатывать. Либо потом приходилось очень твердые детали пытаться шлифовать «в размер», что оказывалось крайне затруднительно и дорого…
….. Именно поэтому в начале 20-го века в России был создан метод азотирования, которые по прочности поверхности детали превосходит цементирования, но при нем практически не происходит термических искажений. Ведь процесс современного ионно-плазменного азотирования проводится при температуре около 500 градусов, что не доводит стальные обрабатываемые детали до состояния, когда в их кристаллической внутренней структуре начинают появляться выраженные термические напряжения и искажения.

коленвал роторного двигателя
* * *
. . . Если кто-то хочет глубже понять теоретические основы азотирования стили и других металлов, то следует почитать серьезные технические книги и научные работы посвященные теме азотирования. Вот краткий список таких материалов:
— Афонский И.Ф., Вер О.И., Смирнов А.В. Теория и практика азотирования. Л.: Госмапзиздат, 1933, — 160 с
— Лахтин Ю.М. Физические основы азотирования. М.: Машгиз, 1948. — 144 с
— Шапиро М.А. Азотирование углеродистых сталей с предварительным азотированием. Вестник машиностроения, 1951, № 2,с.47-50
— Юргенсон А.А. Азотирование в энергомашиностроении. М.: Машгиз, 1962. — 132 с.
— Минкевич А.Н. Химико-термическая обработка стали. М.: Машгиз, 1965. — 331 с
— Яхнина В.Д., Мещеринова Т.Ф. Особенности формирования азотированного слоя в низкоуглеродистых, нержавеющих сталях. -Металловедение и термическая обработка металлов, 1973, № 3, с.9-12
— Лахтин Ю.М., Коган Я.Д. Азотирование стали. — М.: Машиностроение, 1976.-256 с.
— Банных О.А., Зинченко В.М., Прусаков Б.А., Сыропятов В.Я. Развитие азотирования в России. -М. : Изд. МГТУ им. Н.Э. Баумана, 1998. — 67 с.
— И.М. Пастух Теория и практика безводородного азотирования в тлеющем разряде, Харьков 2006
….. Следующая Страница — Ионно-плазменное азотирование в Краснодаре; в Ростове и в Ставрополе заказы приходят за день.
….. Для других регионов- смотри Заказ и Контакты