Azotirovanie.ru

Инженерные системы и решения
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чередование фаз для электросчетчиков

Чередование фаз для электросчетчиков

Учет электроэнергии для предприятий

Комплексные решения для малого и среднего бизнеса

Передача почасовых отчетов в энергокомпании

Сдача отчетности в форматах 80020 по регламентам энергокомпаний

Снижение стоимости электроэнергии до 35%

Перевод на выгодную ценовую категорию «Под ключ»

Контроль качества электроэнергии

Фиксация отклонений напряжения и подготовка претензий к энергокомпаниям

Оперативный контроль электропотребления объектов в любое время на своем мобильном устройстве

Электросчётчики с модемами

Комплекты оборудования для быстрого внедрения АСКУЭ

Решения на базе Ваших счётчиков

АСКУЭ с модемом или без него

Правильно ли подключен счетчик? Определяем при помощи сервиса "яЭнергетик".

Мониторинг уже подключенных на наш сервис счетчиков показал, что большое количество пользователей даже не подозревает, правильно ли подключены их приборы учета, и правильно ли осуществляется учет потребления. При этом вскрывались проблемы даже у ранее опломбированных приборов при их подключению к нашей системе. Как выявлять ошибки в подключении и работе приборов учета?

Мгновенные значения

На яЭнергетик можно увидеть, что счетчик подключен не правильно, если перейти во вкладку «Мгновенные значения» счетчика.

Rightcon1

Подключив электросчетчик к системе, нажмите кнопку «Опросить». Операция опроса занимает некоторое время. На экране появится таблица данных, в которой отображены параметры электросети.

Rightcon2

1. Фазное напряжение

На него стоит обращать внимание, особенно когда прибор учета подключен через трансформаторы напряжения. При этом данные отображаются уже с учетом указанного при добавлении счетчика коэффициента трансформации. Отклонения в фазных напряжениях могут свидетельствовать о:

  • неисправности или некорректном подключении трансформаторов напряжения;
  • неправильной схеме подключения счетчика (перепутаны клеммы на счетчике, не обжаты провода);
  • неисправности самого прибора учета – об этом можно говорить, если все другие возможные причины исключены.
2. Токи нагрузки

Если вы знаете, что у вас симметричная нагрузка, а счетчик регистрирует искажения – повод проверить схему присоединения приборов и их состояние:

  • бракованные счетчики могут не регистрировать токи по какой-либо фазе;
  • в трансформаторах тока и напряжения могут произойти межвитковые замыкания, их функциональность нарушается;
  • состояние соединительных кабелей: на рисунке ниже видно, что ток по фазе С отсутствовал. После осмотра и прозвона кабеля была установлена причина – не прожата клемма трансформатора тока. После устранения проблемы картинка выровнялась.

Rightcon3

3. Активная мощность

Знак активной мощности показывает корректность подключения трансформаторов тока и их фазировку.

На котельной, график активной мощности которой изображен ниже, была перепутана схема подключения трансформаторов тока: контакты и фазировка. Как видно, после корректировки схемы графики приняли положительные значения, и общая регистрируемая мощность возросла на 30%.

Rightcon4

Наиболее часто встречаются случаи, когда вторичные обмотки ТТ подключены «наоборот», бывали выявления заводского брака – все контакты подключены по схеме, но счетчик регистрирует обратное направление мощности.

4. Коэффициенты мощности.

В нормальном режиме работы с преобладающей активной нагрузкой значения коэффициентов мощности принимают значения 0,7 – 1,0, чаще 0,85-0,95. Если регистрируемые прибором учета коэффициенты сильно отличаются от данных значений — нужно проверять схему подключения.

На рисунке ниже показан график коэффициентов мощности объекта, где была нарушена схема подключения трансформатора тока на фазе С: как видим, значение коэффициента находилось в пределах 0,05 – 0,2.

Rightcon5

Векторная диаграмма

Rightcon6

Для удобства проверки правильности подключения счетчика на сервисе яЭнергетик можно увидеть векторную диаграмму. Она строится на основе последних полученных данных и отображается в таблице при опросе мгновенных значений, а так же во вкладке внизу страницы.

Здесь цветами обозначены векторы разных фаз. Чередование рассматривается по часовой стрелке, по цветам ЖЕЛТЫЙ (фаза А) — ЗЕЛЕНЫЙ (фаза В) — КРАСНЫЙ (фаза С). Фаза А всегда отображается сверху. Если векторы фаз В и С перепутаны местами, то необходимо в схеме поменять местами подключение по 2м фазам (на счетчике прямого включения — как подходящие, так и отходящие, чтобы не сбилось направление вращения подключенных после счетчика двигателей).

Фазировка заключается в проверке совпадения по фазе напряжения каждой из трех фаз включаемой электроустановки с соответствующими фазами напряжения сети, и включает в себя следующие операции:

проверка и сравнение порядка следования фаз включаемой электроустановки и сети;

проверка совпадения по фазе одноименных напряжений, отсутствие между ними углового сдвига;

проверка одноименности (расцветки) фаз, соединение которых предполагается выполнить. Целью этой операции является проверка правильности соединения между собой всех элементов электроустановки, то есть правильности подвода токопроводящих частей к включающему аппарату.

Фаза — проводник, пучок проводов, ввод, обмотка или иной элемент многофазной системы переменного тока, являющийся токоведущим при нормальном режиме работы (ГОСТ 24291—90).

Трехфазная система представляет собой совокупность трех симметричных напряжений, амплитуды которых равны по значению и сдвинуты по фазе на один и тот же угол.

Под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, электродвигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.

Читайте так же:
Как записать показания счетчика электроэнергии день ночь

Элементы оборудования, принадлежащие фазе А, окрашивают в желтый цвет, фазы В — в зеленый и фазы С — в красный.

Трехфазные системы напряжений и токов могут отличаться друг от друга порядком следования фаз.

Если фазы следуют друг за другом в порядке А, В, С, это называется прямым порядком следования фаз. Если фазы следуют друг за другом в порядке А, С, В, это называется обратным порядком фаз.

В случаях несовпадения порядка следования фаз или порядка чередования фаз электроустановки и сети при включении выключателя происходит КЗ.

Возможен лишь единственный вариант, при котором возникновение КЗ исключено: когда совпадают и то, и другое.

Под совпадением фаз при фазировке понимают именно этот вариант, когда на вводы выключателя, попарно принадлежащие одной фазе, поданы одноименные напряжения, а обозначения (расцветка) вводов выключателя согласованы с обозначением фаз напряжений.

Фазировка может быть предварительной, выполняемой в процессе монтажа и ремонта оборудования, и при вводе его в работу, производимая непосредственно перед первым включением в работу нового или вышедшего из ремонта оборудования, если при ремонте фазы могли быть переставлены местами.

Предварительной фазировкой проверяется чередование фаз соединяемых между собой элементов оборудования. Произвольное соединение токоведущих жил может нарушить порядок чередования фаз, что приведет к необходимости менять местами жилы у концевых муфт или изменять монтаж шин в ячейке РУ. Такие операции не только нежелательны, но и зачастую невыполнимы. Поэтому перед соединением жил предварительно проверяют их фазировку.

Предварительная фазировка производится на оборудовании, не находящемся под напряжением. Основные виды оборудования фазируются визуально, «прозвонкой», при помощи мегаомметра или импульсного искателя.

Независимо от предварительной фазировки она обязательно проводится при вводе электрооборудования в эксплуатацию. Причем фазировка при вводе в работу электрооборудования производится только электрическими методами.

9.2. Методы и порядок выполнения фазировки

Различают прямые и косвенные методы фазировки оборудования при вводе его в работу.

Прямыми называются такие методы фазировки, при которых она производится на вводах оборудования, находящегося непосредственно под рабочим напряжением. Такие методы широко применяют в установках напряжением до 110 кВ.

Косвенными называются такие методы фазировки, при которых она производится не на рабочем напряжении установки, а на вторичном напряжении ТН, присоединенных к фазируемым частям установки. Такие методы фазировки менее наглядны, чем прямые, но их применение не ограничивается классом напряжения установки.

Из прямых методов фазировки наибольший практический интерес представляют методы фазировки трансформаторов и ЛЭП.

На практике широко применяется прямой метод фазировки трансформатора с обмотками НН до 380 В без установки перемычки между зажимами.

Этим методом фазируют силовые трансформаторы, вторичные обмотки которых соединены в звезду с выведенной нулевой точкой, а также измерительные ТН, имеющие вторичные обмотки с заземленной нейтралью.

Фазировку производят вольтметром со стороны обмотки НН, который должен быть рассчитан на двойное фазное напряжение, поскольку возможно появление такого напряжения между зажимами фазируемых трансформаторов.

Перед началом фазировки следует проверить:

заземлены ли или присоединены к общему нулевому проводу нулевые точки вторичных обмоток;

симметричность напряжений трансформаторов;

если значения измеренных напряжений значительно отличаются друг от друга, проверяется положение переключателей ответвлений обоих трансформаторов. Переключением ответвлений уменьшают разницу напряжений до допустимого значения 10 %.

Сущность фазировки заключается в отыскании выводов, между которыми разность напряжений близка к нулю. Для этого провод от вольтметра присоединяют к одному выводу первого трансформатора, а другим выводом поочередно касаются трех выводов второго трансформатора. Дальнейшие действия зависят от полученных результатов. Если при одном измерении, например, между выводами а1 — а2 показание вольтметра будет близким к нулю, то эти выводы отмечают и вольтметр присоединяют ко второму выводу, например, b1 первого трансформатора и измеряют напряжение между выводами b1 — b2; b1 — c2. Если одно из показаний вольтметра, например, между выводами b1 — b2 опять окажется близким к нулю, то фазировка закончена. Необходимости в измерении напряжения между выводами с1 — с2 нет, поскольку при двух предыдущих нулевых показаниях вольтметра напряжение между третьей парой фаз должно быть также близким к нулю.

Если после измерения напряжений а1 — а2; а1 — b2; а1 — с2; b1 — a2; b1 — b2; b1 — c2 ни одно из показаний вольтметра не было близким к нулю, то фазируемые трансформаторы принадлежат к разным группам соединений и их включение на параллельную работу недопустимо.

При фазировке КЛ и ВЛ 6-10 кВ пользуются индикаторами. На рис. 9.1 показана последовательность операций при фазировке линий 10 кВ индикатором типа УВНФ.

Читайте так же:
Сделать разводку электрики от счетчика

Для проверки исправности индикатора щупом трубки, содержащей резистор, касаются заземления, а щуп другой трубки подносят к одному из зажимов аппарата, находящегося под напряжением (рис. 9.1, а); при этом должна загореться неоновая лампа. Затем щупами обеих трубок касаются одной токопроводящей части (рис. 9.1, б). При этом лампа индикатора гореть не должна. Проверяется напряжение на всех шести выводах коммутационного аппарата (рис. 9.1, в). Такая проверка производится для того, чтобы исключить ошибку при фазировке линии, имеющей обрыв. Абсолютные значения напряжения между фазой и землей роли не играют, так как при фазировке присоединение индикатора будет производиться или на линейное напряжение (несовпадение фаз), или на малую разность напряжений между одноименными фазами (совпадение фаз). Поэтому о наличии напряжения на каждой фазе судят по свечению лампы индикатора.

Процесс собственно фазировки состоит в том, что щупом одной трубки индикатора касаются любого крайнего вывода аппарата, например, фазы С, а щупом другой трубки — поочередно трех выводов со стороны фазируемой линии (рис. 9.1, г). В двух случаях касаний (С — A1 и С — В1) лампа ярко загорается, а в третьем (С — С1) гореть не будет, что укажет на одноименность фаз.

Одноименные фазы соединяют на параллельную работу. Если одноименные пары у разъединителей или выключателей не находятся друг против друга, установка отключается и шины пересоединяются в том порядке, который необходим для совпадения фаз.

Прежде чем приступить к фазировке, следует убедиться в выполнении требований безопасности по подготовке рабочего места и соблюдать специальные требования по работе с измерительными штангами на оборудовании, находящемся под напряжением.

Работы с индикатором напряжения необходимо производить только в диэлектрических перчатках. При фазировке нельзя приближать соединительный провод к заземленным частям. Фазировку нельзя производить во время дождя, снегопада и при тумане, так как изолирующие части индикатора напряжения могут увлажниться и будут перекрыты.

Косвенным методом обычно фазируют трансформаторы и линии всех классов напряжения, чаще всего при двойной системе шин.

В РУ, где обе системы шин находятся в работе, для выполнения фазировки освобождают одну систему шин, выводя ее в резерв.

При включенном шиносоединительном выключателе вольтметром проверяют совпадение фаз вторичных напряжений ТН рабочей и резервной систем шин. Затем отключают шиносоединительный выключатель и снимают с его привода оперативный ток. На резервную систему шин включают цепь, для которой следует произвести фазировку. По фазируемой цепи с противоположного конца подают напряжение и производят фазировку на выводах вторичных цепей ТН рабочей и резервной систем шин.

Для трехобмоточных трансформаторов фазировку выполняют в два приема: со стороны обмотки НН и со стороны СН.

Сначала трансформатор включают на резервную систему шин НН и подают на него напряжение со стороны ВН. Фазировку выполняют на зажимах ТН, принадлежащих шинам НН. При совпадении фаз трансформатор отключают со стороны НН, включают на резервную систему шин СН и выполняют фазировку на этом напряжении.

После получения положительных результатов в обоих случаях фазировки трансформатор считается сфазированным и его включают в работу.

При фазировке шинных трансформаторов необходимо учитывать схему заземления вторичных обмоток ТН, так как заземленной может быть как нейтраль, так и одна фаза.

В первом случае для фазировки можно применять вольтметр со шкалой на двойное фазное напряжение, во втором — на двойное линейное напряжение. Кроме того, фазировку ТН, у которых заземлена фаза вторичных обмоток, выполняют при помощи фазоуказателя, что допустимо, так как фазы фазируемых напряжений жестко соединены и требуется установить лишь совпадение напряжения одноименных фаз, а также любой другой фазы. Если они не совпадают, диск фазоуказателя при подаче на его выводы напряжения от первого ТН будет вращаться в одном направлении, а при подаче напряжения от второго ТН — в другом.

На практике имеют место случаи, когда фазируемые электроустановки имеют разные порядки следования фаз.

Например, необходимо провести фазировку и включить на параллельную работу две электроустановки, в одной из которых прямой, а в другой — обратный порядок следования фаз. Их соединяет ЛЭП. Для включения двух электроустановок на параллельную работу необходимо, чтобы одна из них по отношению к другой имела один и тот же порядок следования фаз — только в этом случае возможна их синхронизация.

Для того чтобы порядки следования фаз электроустановок совпали, то есть чтобы обратный порядок следования фаз одной электроустановки по отношению к другой стал прямым, на ЛЭП изменяют порядок чередования фаз. Это может быть осуществлено перемещением на линии проводов фаз на одной опоре, то есть изменением их чередования в пространстве.

Таким образом, изменением порядка чередования фаз на линии изменяется порядок следования фаз векторов напряжений одной электроустановки по отношению к другой, хотя абсолютные порядки следования фаз векторов напряжений электроустановок остаются прежними. В этом заключается взаимозависимость понятий порядка следования и чередования фаз.

Читайте так же:
Передать показания счетчиков электричества во владивостоке

Индикаторы чередования фаз

DT-901 Индикатор порядка чередования фаз DT-901 Индикатор порядка чередования фаз DT-901 Индикатор порядка чередования фаз DT-901 Индикатор порядка чередования фаз

Установка многофазного силового оборудования — сложный процесс, от результата которого зависит эффективная функциональность прибора. Соблюдение грамотной последовательности чередования фаз определяет направление вращения электромагнитного поля в электрических машинах. Для проведения работ требуется индикатор чередования фаз, разработанный для подключения к трехфазной сети. Такое устройство выполняет следующие задачи:

  • определяется направление вращения ротора электродвигателя;
  • находит магнитное поле;
  • устанавливает очередность подключения обмоток электромоторов.

Классификация индиктора фаз

В зависимости от принципа работы контрольно-измерительные приборы классифицируют на

  • электромеханические,
  • электронные.

Модели электромеханического типа представляют собой миниатюрный трехфазный асинхронный двигатель (с большим проскальзыванием), визуальным наблюдением за ротором которого определяют направление вращения поля (соответственно порядок чередования фаз). Благодаря простоте такие индикаторы отличаются высокой надежностью и дешевизной.

В электронных индикаторах порядок смены фаз определяется путем выполнения измерений. Для отображения полученных результатов приборы такого типа оснащаются светодиодными индикаторами или ЖК-дисплеями. Благодаря тому, что подобные модели не имеют движущихся элементов, ресурс их работы значительно больше, чем у электромеханических приборов, а результаты измерений получаются быстрее (практически моментально после включения прибора).

Как выбрать индикатор фаз?

При покупке индикатора фаз следует обратить внимание на следующие критерии:

  • диапазон частот,
  • диапазон напряжений,
  • уровень защиты от окружающей среды пыль, влажность, воздействие высоких температур,
  • соотеветсвие требованиям электробезопасности,
  • компактность и вес.

При выборе модели следует учитывать диапазон проведения замеров. Даипазон подбирают в зависимости от поставленной задачи.

Для установки производственного оборудования достаточно чтоб индикатор работал в пределах напряжения 120-400 В, с частотой 50-60 Гц.

При подключении трансформаторных подстанций, наладке систем резервного питания и т.п. (где используются трехфазные повышающие или понижающие трансформаторы) следует использовать модели с более широким диапазоном напряжений (от 40 до 800 В).

При этом, устройство должно иметь высокий уровень защиты, соответствовать требованиям электробезопасности ( EN61010-1 CAT III 600V ), быть устойчивым к пыли, высокой температуры и влажности. Для удобства эксплуатации следует подбирать модель с небольшим весом и компактными размерами.

В нашем интернет-магазине можно купить индикаторы чередования фаз фирмы CEM. Продукция собственного производства отличается высоким качеством сборки, используемых материалов, комплектующих, гарантией от 1 до 3 лет.

Трансформаторные подстанции высочайшего качества

Под трехфазной системой э. д. с. (напряжений) понимают совокупность трех электрических цепей переменного тока одной частоты, э. д. с. которых не совпадают по фазе. На рис. 1 ,а приведена схема простейшего синхронного генератора трехфазного тока. Обмотки, в которых получается переменная э. д. с, помещены в пазы статора, смещенные по окружности на 120°. По обмотке ротора проходит постоянный ток, создавая магнитное поле. При пересечении обмоток статора магнитным полем вращающегося ротора в них наводится симметричная система трех синусоидальных э. д. с. одинаковой частоты и амплитуды, сдвинутых по фазе на 120° (рис. 1,б). За один оборот ротора, что соответствует периоду времени Т, в каждой из обмоток происходит полный цикл изменения э. д. с. Когда ось ротора I — I пересекает витки обмотки статора, в них наводится максимальная э.д. с. Но так как для трех обмоток статора это происходит в разные моменты времени, то


Рис 1 Получение трехфазной симметричной системы э. д. с.
а-синхронный генератор; б-график э.д.с.; в-векторная дивграмма э.д.с.; 1-статор; 2-обмотка статора; 3-ротор; 4-обмотка ротора

и максимумы наведенных э. д. с. не совпадают по фазе, т. е. их амплитуды Еа, Ев, Ес оказываются сдвинутыми одна относительно другой на 1/3 периода, или на 120°.

Фаза.
Угол, характеризующий определенную стадию периодически изменяющегося параметра (в данном случае э. д. с), называют фазовым углом или просто фазой. При совместном рассмотрении двух (и более) синусоидально изменяющихся э. д. с. одной частоты, если их нулевые (или амплитудные) значения наступают не одновременно, говорят, что они сдвинуты по фазе. Сдвиг всегда определяют между одинаковыми фазами, например между началами синусоид, как это показано на рис. 1,6, или между фазами амплитуд. При сдвиге двух синусоид по фазе одна из них будет отставать от другой по времени. Чтобы определить, какая из синусоид отстает, находят их начала, т. е. нулевые значения э. д. с. при переходе от отрицательных к положительным значениям. На рис. 1,6 начала обозначены буквами а, Ь, с. Из рисунка видно, что начало одной синусоиды (например, синусоиды, проходящей через точку Ь) расположено правее начала другой (синусоиды, проходящей через точку а). Это свидетельствует о том, что синусоида с началом в точке b отстает во времени от синусоиды с началом в точке а. Еще более отстает синусоида, проходящая через точку с, так как ее начало сдвинуто на 2/3 Т или на 240° от начала координат (момента, когда t = 0).
На практике под фазой трехфазной системы понимают также отдельный участок трехфазной цепи, по которому проходит один и тот же ток, сдвинутый относительно двух других по фазе. Исходя из этого, фазой называют обмотку генератора, трансформатора, двигателя, провод трехфазной линии, чтобы подчеркнуть принадлежность их к определенному участку трехфазной цепи.
Фазы именуют прописными буквами А, В, С. Но навешивать надписи букв на оборудование станций и подстанций не всегда удобно. Поэтому при окраске оборудования (например, сборных и соединительных шин в закрытых РУ), которая применяется с целью защиты от коррозии, используют красители различного цвета. В соответствии с Правилами устройства электроустановок (ПУЭ) шины фазы А окрашивают в желтый цвет, фазы В -в зеленый и фазы С -в красный. Поэтому фазы часто называют Ж, 3, К. Для распознания фаз оборудования на кожухах, арматуре изоляторов, конструкциях и опорах наносят соответствующие цветные метки в виде кружков или полос.
Таким образом, в зависимости от рассматриваемого вопроса фаза — это либо угол, характеризующий состояние синусоидально изменяющейся величины в каждый момент времени, либо участок трехфазной цепи, т. е. однофазная цепь, входящая в состав трехфазной.

Читайте так же:
Остановка электросчетчика энергомера се 200

Порядок следования фаз.

Порядок, в котором э. д. с. трех фаз непрерывно проходит через одни и те же значения (например, через положительные амплитудные значения), называют порядком следования фаз. Трехфазные системы э. д. с. могут отличаться друг от друга порядком следования фаз. Если вращение ротора генератора происходит в направлении, изображенном на рис. 1,а, то порядок следования фаз будет А, В, С — это так называемый прямой порядок следования фаз. Если направление вращения ротора изменить, то изменится и порядок следования фаз. Фазы будут проходить через максимальные значения в порядке А, С, В,- это обратный порядок следования фаз.
Иногда вместо термина «порядок следования фаз» говорят «порядок чередования фаз». Во избежание путаницы условимся применять термин «чередование фаз» только в том случае, когда это связано с понятием фазы как участка трехфазной цепи.

Чередование фаз.
Итак, под чередованием фаз понимают очередность, в которой фазы трехфазной цепи (отдельные провода линии, обмотки и выводы электрической машины ит. д.) расположены в пространстве, если обход «их каждый раз начинать из одного и того же пункта (точки) и производить в одном и том же направлении, например сверху вниз, по часовой стрелке и т. д. На основании такого определения говорят о чередовании обозначений выводов электрических машин и трансформаторов, расцветки проводов и сборных шин. В ряде случаев порядок чередования фаз строго регламентирован. Так, согласно ГОСТ порядок чередования обозначений выводов синхронных машин принимается соответствующим порядку следования фаз для установленного направления вращения ротора. Правила устройства электроустановок предусматривают для закрытых РУ следующий порядок чередования окрашенных сборных шин при их вертикальном расположении: верхняя шина — желтая, средняя — зеленая, нижняя — красная. При расположении шин горизонтально наиболее удаленная шина окрашивается в желтый цвет, а ближайшая — в красный. Ответвления от сборных шин выполняются так, чтобы слева располагалась фаза А, справа — фаза С, если смотреть на шины из коридора обслуживания (при трех коридорах в РУ — из центрального).
На открытых подстанциях чередование окраски сборных и обходных шин ориентируют по силовым трансформаторам. Ближайшая к ним фаза шин окрашивается в желтый цвет, средняя — в зеленый, отдаленная — в красный. Ответвления от сборных шин выполняют таким образом, чтобы слева располагалась шина фазы А, справа — фазы С, если смотреть из ОРУ на вводы трансформаторов.
Отступление от указанных выше требований порядка чередования окраски крайних шин РУ ПУЭ допускает в виде исключения в тех отдельных случаях, когда соблюдение этих требований связано с усложнением монтажа или необходимостью установки специальных опор для транспозиции проводов воздушных линий.

При фазировке трехфазных цепей могут быть различные варианты чередования обозначений (расцветки) зажимов на включающем аппарате и подачи на них напряжения разных фаз. Для простоты дальнейших рассуждений допустим, что фазируемые напряжения двух трехфазных цепей имеют одинаковые порядки следования фаз. При этом условии фазы одноименных напряжений могут совпадать, а порядок чередования обозначений зажимов у выключателя — нет (рис. 2,а) или, наоборот, при одном и том же порядке чередования обозначений зажимов физируемые напряжения могут оказаться сдвинутыми по фазе (рис. 2,6). Поворот одноименных векторов напряжений относительно друг друга может быть не только на угол 120°, как это показано на рис. 2,6, но на любой угол, кратный 30°, что характерно для трансформаторов, имеющих разные группы соединения обмоток. В обоих приведенных случаях включение выключателя неизбежно приводит к к. з.

Рис. 2. Варианты несовпадения (а, б) и совпадения (в) фаз двух частей установки.

Читайте так же:
Двухтарифный счетчик электроэнергии тарифы для населения украины

Однако возможен вариант, когда совпадает и то, и другое (рис. 2, в). Короткое замыкание между соединяемыми частями установки здесь исключено.
Под совпадением фаз при фазировке как раз и понимают именно этот случай, когда одноименные напряжения фазируемых трехфазных цепей совпадают по фазе, а чередование обозначений у выключателя зажимов (или их расцветка) согласовано с соответствующими фазами напряжений и между собой.

Векторное изображение синусоидально изменяющихся э. д. с. (напряжений, токов).

Периодически изменяющиеся синусоидальные величины изображают в виде синусоид (рис. 1,6) и вращающимися векторами — направленными отрезками прямой линии (рис. 1,в). Связь между синусоидальной кривой и вращающимися векторами показана на рис. 3. Синусоида получается проектированием вращающегося вектора (равного в заданном масштабе амплитуде изменяющейся э. д. с.) на вертикальную ось I — I , перемещаемую по оси абсцисс со скоростью, пропор-циональной частоте вращения вектора. Сдвиг фаз между двумя векторами, начала которых совмещены в одной точке, определяется углом j (рис. 4). Отставание вектора Ев от вектора Еа показано направлением стрелки угла j (против направления вращения векторов).
Следует сказать, что понятие вектора з. д. с. (напряжения, тока и т. д.) в электротехнике несколько отличается от понятия вектора, скажем, силы или скорости в механике. Если в механике векторы не могут быть определены полностью только по их значениям без указания направления их действия, то в электротехнике вращающиеся векторы не определяют действительного направления изображаемых ими величин в пространстве. Однако совокупное расположение вращающихся с одной частотой векторов (например, э. д. с. трех фаз) на диаграмме дает представление о происходящем в электрической цепи процессе во времени и позволяет сделать количественную оценку явлений путем проведения элементарных операций над векторами.

Puc. 3. Получение синусоидального графика при вращении вектора.

Рис. 4. Изображение двух з. д. с. синусоидами и векторами при различных углах сдвига, а — j = 0°; б — j = 90°, в — j = 180 °.

Основные схемы соединений трехфазных цепей.
Обмотки электрических машин (генераторов, синхронных компенсаторов, двигателей) и трансформаторов соединяют в звезду или треугольник.

При соединении трех обмоток генератора в звезду концы их объединяют в одну точку (рис. 5, а), которую называют нулевой (или нейтральной). Электродвижущие силы между началами и нулевой точкой обмоток называют фазными э.д. с. и обозначают Еа, Ев, Ес, или просто Еф. Электродвижущие силы между выводами фаз называют линейными Ел. Они получаются как разности векторов соответствующих, фазных э. д. с. генератора, например, Еа — Ев = Еав (рис. 5,6). Порядок индексов в обозначении линейных э. д. с. не произволен — индексы ставятся в порядке вычитания векторов: Ев — Ес = Евс; Ес — Еа = Еса. С учетом заданного направления вращения векторов такой расстановке индексов соответствует вычитание вектора э. д. с. отстающей фазы из э. д. с. опережающей. В результате векторы линейных э. д. с. всегда опережают уменьшаемые фазные векторы на 30° Значения линейных э. д. с. в корень из трех, или в 1,73 раза больше фазных, в чем легко убедиться измерением векторов на диаграмме.


Рис. 5. Соединение обмоток генератора в звезду (а) и векторная диаграмма э. д. с. (б).

Соединение обмоток генератора треугольником показано на рис. 6,а.

Точки А, В, С являются общими для каждой пары фазных обмоток. Если к зажимам генератора не подсоединена нагрузка, то в обмотках, образующих замкнутый контур, отсутствует ток, обусловленный синусоидальными э. д. с. промышленной частоты, сдвинутыми относительно друг друга на 1 /3 Т, так как в каждый момент времени геометрическая сумма этих э. д. с. равна нулю (рис. 6,6).
Из рис. 6 следует, что при соединении в треугольник фазная э. д. с. равна линейной и совпадает с ней по фазе. Заметим, что на станциях обмотки генераторов, как правило, соединяют в звезду. Соединение треугольником встречается крайне редко.
Обмотки трансформаторов, так же как и у генераторов, соединяют в звезду и треугольник (схема зигзаг встречается редко). Схема звезды часто выполняется с выведенной нулевой точкой. Схемы соединений в звезду, в звезду с выведенной нулевой точкой и в треугольник в тексте обычно обозначают буквами У, Ун и Д соответственно. Обмотки высшего напряжения (ВН) трансформаторов соединяют в У или Д независимо от схемы соединения источников питания. Вторичные обмотки низшего напряжений (НН) также соединяют в У или Д. 12
В отличие от генераторов у трансформаторов соединение треугольником по крайней мере одной из его обмоток является обычным.


Рис. 6. Соединение обмоток генератора в треугольник (а) и векторная диаграмма э. д. с. (б).

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector