Расчет мощности бытовой электрической сети
Расчет мощности бытовой электрической сети
В данной статье приведен порядок расчета нагрузки бытовой электрической сети по установленной мощности и коэффициенту спроса (так называемый метод коэффициента спроса).
Рассчитанная по данной методике электрическая бытовая мощность может применяться для выбора аппаратов защиты и сечения кабелей электропроводки.
Методика расчета бытовой мощности
Расчет мощности бытовой электросети по методу коэффициента спроса производится в следующем порядке:
Справочно: Так как в соответствии с действующими правилами силовые и осветительные сети принято разделять, расчет необходимо производить раздельно для силовой сети (розеточных групп) и сети освещения.
1) Определяется установленная (суммарная) электрическая мощность (Pуст) отдельно для силовой сети (розеточной группы) — Pуст-с и сети освещения Pуст-о:
где: P1,P2,Pn — мощности отдельно взятых электроприемников (электрических приборов) в доме. При отсутствии фактических значений мощностей их можно принять нашей таблице мощностей бытовых электроприборов.
где: P1,P2,Pn — мощность одной отдельно взятой лампы каждого типа в доме;
Примечание: при отсутствии данных о мощности и количестве ламп для расчета установленной мощности сети освещения можно воспользоваться нашим онлайн-калькулятором расчета освещения помещения по площади помещения.
2) Исходя из установленной определяем расчетную мощность:
При определении мощности бытовой электросети необходимо учитывать, что все имеющиеся в доме электроприборы, как правило, одновременно в сеть не включаются поэтому для определения расчетной мощности применяется специальный поправочный коэффициент называемый коэффициентом спроса, значение которого принимается исходя из установленной мощности (суммарной мощности бытовых электроприборов):
Примечание: При значении установленной мощности силовой сети до 5 кВт включительно коэффициент спроса рекомендуется принимать равным 1.
Расчетную мощность так же определяем раздельно:
- Для силовой сети:
где: Pуст-с — установленная мощность силовой сети;
Ксс — коэффициент спроса для силовой сети.
- Для сети освещения:
где: Pуст-о — установленная мощность сети освещения;
Ксо — коэффициент спроса для сети освещения.
- Общую расчетную мощность бытовой сети можно получить получить сложив расчетные мощности силовой сети и сети освещения:
Полученные значения расчетных мощностей можно применять для определения расчетного тока сети и выбора аппаратов защиты (автоматических выключателей, УЗО и т.д.), а так же расчета сечения электропроводки. Подробнее об этом читайте в статье: Расчет электрической сети и выбор аппаратов защиты.
Так же для данных расчетов можно воспользоваться следующими нашими онлайн калькуляторами:
ВАЖНО! В случае применения для расчета аппаратов защиты (автомата, дифавтомата, УЗО) вышеуказанных онлайн калькуляторов с использованием значения расчетной мощности определенного по методике приведенной в данной статье в калькуляторах при выборе типа указанной мощности следует поставить галочку в пункте: «Мной указана максамальная разрешенная к использованию мощность (проектная/расчетная мощность, либо мощность указанная в договоре электроснабжения)», т.к. в противном случае калькулятор использует при расчете коэффициент спроса который вами уже учтен, что приведет к некорректному расчету.
Пример расчета мощности бытовой сети
Для примера расчета бытовой мощности возьмем частный дом в котором имеются следующие электроприемники:
- стиральная машина — 2000 Вт
- микроволновая печь — 1800 Вт
- мультиварка — 1200 Вт
- кухонная вытяжка — 120 Вт
- пылесос — 550 Вт
- телевизор — 130 Вт
- персональный компьютер — 350 Вт
- принтер — 60 Вт
В сети освещения:
- Лампочки накаливания — 6 шт по 75 Вт
- Энергосберегающие лампочки — 8 шт по 22 Вт
Производим расчет мощности силовой сети:
- Установленная мощность (сумма мощностей всех электроприборов):
теперь переведем данную мощность в киловатты для чего необходимо разделить полученное значение на 1000:
- Определяем расчетную мощность силовой сети, для чего умножаем полученную установленную мощность на коэффициент спроса значение которого определяем по таблице выше (Ксс принимаем равным 0,8):
По аналогии определяем мощность сети освещения:
- Установленная мощность сети освещения:
Pуст-о=6*75+8*22=450+176=626 Вт (или 0,626 кВт)
- Определяем расчетную мощность силовой сети (учитывая малую мощность сети освещения и тот факт, что в такой небольшой сети все лампочки могут одновременно работать длительный период времени коэффициент спроса для сети освещения (Ксо)принимаем равным 1):
- Общая мощность бытовой сети составит:
Применим рассчитанные значения для определения номинального тока автоматического выключателя и сечения кабеля с помощью соответствующих онлайн калькуляторов (на примере силовой сети):
Автоматический выключатель для силовой сети определяем с помощью Онлайн-калькулятора расчета автомата по мощности:
Сечение кабеля для силовой сети определяем с помощью Онлайн-калькулятора расчета сечения кабеля по мощности:
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Таблицы для расчетов электрических нагрузок
Расчет мощности бытовой электросети по методу коэффициента спроса производится в следующем порядке:
Справочно: Так как в соответствии с действующими правилами силовые и осветительные сети принято разделять, расчет необходимо производить раздельно для силовой сети (розеточных групп) и сети освещения.
1) Определяется установленная (суммарная) электрическая мощность (Pуст) отдельно для силовой сети (розеточной группы) — Pуст-с и сети освещения Pуст-о:
Pуст-с=P1+P2+…+Pn
где: P1,P2,Pn — мощности отдельно взятых электроприемников (электрических приборов) в доме. При отсутствии фактических значений мощностей их можно принять нашей таблице мощностей бытовых электроприборов.
Pуст-о=P1*n1+P2*n2+…+Pn*nn
где: P1,P2,Pn — мощность одной отдельно взятой лампы каждого типа в доме;
n1, n2, nn, — количество ламп каждого типа.
Примечание: при отсутствии данных о мощности и количестве ламп для расчета установленной мощности сети освещения можно воспользоваться нашим онлайн-калькулятором расчета освещения помещения по площади помещения.
2) Исходя из установленной определяем расчетную мощность:
При определении мощности бытовой электросети необходимо учитывать, что все имеющиеся в доме электроприборы, как правило, одновременно в сеть не включаются поэтому для определения расчетной мощности применяется специальный поправочный коэффициент называемый коэффициентом спроса, значение которого принимается исходя из установленной мощности (суммарной мощности бытовых электроприборов):
Примечание: При значении установленной мощности силовой сети до 5 кВт включительно коэффициент спроса рекомендуется принимать равным 1.
Расчетную мощность так же определяем раздельно:
- Для силовой сети:
Pрс=Pуст-с*Ксс
где: Pуст-с — установленная мощность силовой сети;
Ксс — коэффициент спроса для силовой сети.
- Для сети освещения:
Pро=Pуст-о*Ксо
где: Pуст-о — установленная мощность сети освещения;
Ксо — коэффициент спроса для сети освещения.
- Общую расчетную мощность бытовой сети можно получить получить сложив расчетные мощности силовой сети и сети освещения:
Pобщ.=Pрс+Pро
Полученные значения расчетных мощностей можно применять для определения расчетного тока сети и выбора аппаратов защиты (автоматических выключателей, УЗО и т.д.), а так же расчета сечения электропроводки. Подробнее об этом читайте в статье: Расчет электрической сети и выбор аппаратов защиты.
Так же для данных расчетов можно воспользоваться следующими нашими онлайн калькуляторами:
- Онлайн расчет тока сети
- Онлайн расчет автомата по мощности
- Онлайн расчет дифавтомата по мощности
- Онлайн расчет УЗО по мощности
- Онлайн расчет сечения кабеля по мощности
ВАЖНО! В случае применения для расчета аппаратов защиты (автомата, дифавтомата, УЗО) вышеуказанных онлайн калькуляторов с использованием значения расчетной мощности определенного по методике приведенной в данной статье в калькуляторах при выборе типа указанной мощности следует поставить галочку в пункте: «Мной указана максамальная разрешенная к использованию мощность (проектная/расчетная мощность, либо мощность указанная в договоре электроснабжения)», т.к. в противном случае калькулятор использует при расчете коэффициент спроса который вами уже учтен, что приведет к некорректному расчету.
Пример расчета мощности бытовой сети
Для примера расчета бытовой мощности возьмем частный дом в котором имеются следующие электроприемники:
- стиральная машина — 2000 Вт
- микроволновая печь — 1800 Вт
- мультиварка — 1200 Вт
- кухонная вытяжка — 120 Вт
- пылесос — 550 Вт
- телевизор — 130 Вт
- персональный компьютер — 350 Вт
- принтер — 60 Вт
В сети освещения:
- Лампочки накаливания — 6 шт по 75 Вт
- Энергосберегающие лампочки — 8 шт по 22 Вт
Производим расчет мощности силовой сети:
- Установленная мощность (сумма мощностей всех электроприборов):
теперь переведем данную мощность в киловатты для чего необходимо разделить полученное значение на 1000:
- Определяем расчетную мощность силовой сети, для чего умножаем полученную установленную мощность на коэффициент спроса значение которого определяем по таблице выше (Ксс принимаем равным 0,8):
По аналогии определяем мощность сети освещения:
- Установленная мощность сети освещения:
Pуст-о=6*75+8*22=450+176=626 Вт (или 0,626 кВт)
- Определяем расчетную мощность силовой сети (учитывая малую мощность сети освещения и тот факт, что в такой небольшой сети все лампочки могут одновременно работать длительный период времени коэффициент спроса для сети освещения (Ксо)принимаем равным 1):
- Общая мощность бытовой сети составит:
Применим рассчитанные значения для определения номинального тока автоматического выключателя и сечения кабеля с помощью соответствующих онлайн калькуляторов (на примере силовой сети):
Автоматический выключатель для силовой сети определяем с помощью Онлайн-калькулятора расчета автомата по мощности:
Сечение кабеля для силовой сети определяем с помощью Онлайн-калькулятора расчета сечения кабеля по мощности:
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
↑ Наверх
Таблицы для расчетов электрических нагрузок
Определение потребной мощности источников временного электроснабжения производится путем выявления электрических нагрузок токоприемников (электродвигателей, сварочной аппаратуры, осветительной нагрузки и т.п.).
Потребная мощность трансформаторов определяется в следующей последовательности:
1) подсчитываются расчетные нагрузки одного или группы одинаковых токоприемников:
а) активная в кВт
б) реактивная в кВАр
2) находится расчетный коэффициент мощности cosj
по
tgj
, полученному из формулы:
затем по таблице 6 находится величина cosj
Тригонометрические функции tgj
tgj cos j | 0,3 0,96 | 0,4 0,93 | 0,5 0,9 | 0,6 0,86 | 0,7 0,82 | 0,75 0,8 | 0,8 0,78 | 0,9 0,74 | 0,71 | 1,1 0,67 | 1,2 0,64 |
tgj cos j | 1,3 0,61 | 1,4 0,56 | 1,5 0,55 | 1,6 0,53 | 1,7 0,5 | 1,8 0,49 | 0,45 | 2,2 0,41 | 2,3 0,4 | 0,3 | — — |
3) определяется суммарная нагрузка в кВа по объектам или видам работ по строительной площадке в целом:
4) зная суммарную нагрузку, определяем потребную мощность трансформаторов в кВа
— расчетная активная нагрузка в кВт;
— установленная мощность токоприемников потребителей в кВт;
— коэффициент спроса одного или нескольких однотипных токоприемников, принимаемый по таблице 7;
— расчетная реактивная нагрузка в кВА;
— суммарная нагрузка строительной площадки в кВа;
— коэффициент совпадения нагрузок (для строек равен 0,75-0,85);
— суммарная активная нагрузка строительной площадки в кВт;
— среднерасчетный коэффициент мощности строительной площадки.
Среднее значение коэффициента спроса Кс
и cos
j
для строительных площадок
Характеристики нагрузок | Кс | cosj |
Экскаваторы с электроприводом 1-3 шт. | 0,5 | 0,6 |
более 3 шт. | 0,4 | 0,5 |
Растворные узлы | 0,4 | 0,5 |
Краны башенные и портальные 1-2 шт. | 0,3 | 0,5 |
более 2 шт. | 0,2 | 0,4 |
Механизмы непрерывного транспорта | 0,5 | 0,6 |
Электросварочные трансформаторы | 0,3 | 0,4 |
Насосы, вентиляторы, компрессоры | 0,6 | 0,75 |
Переносные механизмы | 0,1 | 0,4 |
Трансформаторный электропрогрев бетона, отогрев грунта и трубопроводов | 0,7 | 0,75 |
Электрическое освещение | ||
— наружное | ||
— внутреннее (кроме складов) | 0,8 | |
— освещение складов | 0,35 |
Расчет ведется с учетом сроков, предусмотренных календарным планом производства строительно-монтажных работ и графика работы механизмов на строительной площадке. Получаемые по расчету величины нагрузок по отдельным объектам или видам работ заносятся в табл. 8, после чего сумма нагрузок по данному объекту заносится в табл. 9.
В таблице 10 приведен конечный расчет потребности в электроэнергии.
Таблица подсчета нагрузок и расходов электроэнергии по строительно-монтажным работам
№ п/п | Наименование строящихся объектов и видов работ | Токоприемники | Коэффициенты | Расчетная мощность | Периоды строительства | Потребное количество электроэнергии в тыс. кВт.ч | ||
наименование | количество | общая установленная мощность в кВт | спроса Кс | мощности cosj | активная в кВт | реактивная в кВАр | … | п |
Потребная расчетная активная мощность в кВт | ||||||||
Принимается по паспорту машины | Принимаются по таблице 7 | Рассчитывается по формулам 3.1. и 3.2. | Расчетная мощность (из графы 8), умноженная на время работы механизма | |||||
Всего по строящемуся объекту |
Сводная таблица подсчета суммарных нагрузок и расходов электроэнергии на строительных и монтажных работах
№ п/п | Наименование строящихся объектов и видов работ | Суммарная установленная мощность токоприемников Ру в кВт | Общие расчеты коэффициента | Суммарная расчетная мощность | Максимальная потребная трансформаторная мощность Sм в кВа | Потребное количество электроэнергии на весь период строительства в кВт.ч | Периоды строительства |
спроса Кс | мощности cosj | активная Рм в кВт | реактивная Qм в кВАр | … | п | ||
Требуемая суммарная мощность трансформаторной подстанции в кВт | |||||||
Итого Графы 5 Формы 1 | Определяется как частное от деления графы 6 на графу 3 данной таблицы | В графы заносится сумма активных и реактивных нагрузок по объекту в целом из формы 1 | Рассчитывается по формулам 4, 5 | Суммарная мощность электроэнергии по видам работ или строящимся объектам в тыс. кВт.ч (определяется по графе 11 формы 1) | Требуемая трансформаторная мощность находится путем деления суммы активных нагрузок (по данным графы 10 формы 1) на расчетный cosj (формула 12) с учетом Кмн (формула 5) |
Расчет электрических нагрузок
№ п/п | Наименование узлов питания и группы электроприемников | Код эл. приемника | Установленная мощность | Коэффициент спроса | cosj | tgj | Расчетная нагрузка |
одного электр. приемника | общая | Рр , кВт | Qр , кВА | Sp , кВ.А | |||
Башенный кран НВК-160.2 | 55,0 | 55,0 | 1,00 | 0,96 | 0,29 | 55,00 | 16,06 |
Башенный кран КВк-160.2 | 30,0 | 30,0 | 1,00 | 0,71 | 0,98 | 30,00 | 29,40 |
Сварочный тр-р ТД-502-УЗ | 19,3 | 38,6 | 38,6 | 0,50 | 0,75 | 19,30 | 14,48 |
Сварочный пост ПСО-500 | 24,0 | 24,0 | 1,00 | 0,89 | 0,51 | 24,00 | 12,24 |
Подъемник ПРС-1000 | 26,0 | 26,0 | 1,00 | 0,91 | 0,45 | 26,00 | 11,70 |
Бетоносмеситель СБ-31 | 7,5 | 7,5 | 1,00 | 0,92 | 0,42 | 7,50 | 3,15 |
Бетононасос С-296А | 13,0 | 13,0 | 1,00 | 0,92 | 0,42 | 13,00 | 5,46 |
Прожектор ПКН-1500 | 1,5 | 30,0 | 1,00 | 1,00 | 0,00 | 30,00 | 0,00 |
Освещение раб. мест | 20,0 | 20,0 | 0,80 | 1,00 | 0,00 | 16,00 | 0,00 |
Итого: | 0,92 | 0,42 | 220,80 | 92,48 | |||
Потери в тр-ре: | 1,28 | 14,85 | |||||
Итого с потерями в тр-ре: | 0,901 | 0,48 | 222,08 | 107,33 | 246,65 | ||
Компенсация: | -75 | ||||||
Итого после компенсации: | 0,99 | 0,16 | 222,08 | 32,33 | 224,42 |
3.4. Данные для определения потребности в освещении строительной площадки
Электрическое освещение строительных и монтажных работ подразделяется на рабочее, аварийное, эвакуационное и охранное.
1. Рабочее освещение должно быть предусмотрено для всех строительных площадок и участков, где работы выполняются в ночное время и сумеречное время суток, и осуществляется установками общего освещения и комбинированного. Общее равномерное освещение следует применять, если нормируемая величина освещения не превышает 2 лк. В остальных случаях в дополнение к общему равномерному должно предусматриваться общее локализованное освещение или местное освещение. Наименьшая освещенность рабочих мест в зависимости от вида выполняемых работ принимается по ГОСТ 12.1.046-85 «Строительство. Нормы освещенности строительных площадок».
Максимальный параметр освещенности рабочих мест составляет:
— Погрузка, установка, подъем, разгрузка оборудования, строительных конструкций, деталей и материалов грузоподъемными кранами — 10 лк;
— Монтаж конструкций стальных, железобетонных и деревянных (каркасы зданий, мачты, эстакады, фермы, балки и т.д.) — 30 лк;
— Бетонирование колонн, балок, плит покрытий, мостовых конструкций и т.д. — 30 лк;
— Кладка из крупных бетонных блоков, природных камней, кирпичная кладка, монтаж сборных фундаментов — 10 лк
Нагрузочное тестирование на Gatling: конфигурация и профиль нагрузки
После того, как окружение для нагрузочного тестирования на Gatling подготовлено, можно приступать к разработке скрипта нагрузки. Синтаксически, любой Gatling-скрипт состоит из 2-х частей: конфигурации и непосредственного профиля нагрузки. О них и поговорим.
Конфигурация
Для задания конфигурации потребуется файл, содержащий данные о пользователях, которые нагрузят систему:
Что здесь что: • ssv (semicolon separated values ) — это формат файла, который совсем необязательно должен совпадать с его расширением (поддерживаются и другие форматы, о чём лучше почитать в официальной документации; • fileName — это строка, содержащая абсолютное имя файла (C:datausers.csv ); • circular — это метод обхода значений в файле. В нашем примере, когда дойдём до последней строки с пользователем, произойдёт возврат в начало.
Далее надо задать http-конифг, который будет работать для всех запросов:
Тут следует задать нужные хедеры, базовый URL и прочие настройки: к примеру, указать прокси либо отключить кеширование.
Теперь приступаем к созданию сценария:
Обратите внимание, что конфигурация должна содержаться в классе, расширяющий касс — Simulation.
Пример полного проекта можно посмотреть здесь. Таким образом создаётся сценарий, в котором используются пользователи и http-конфиг. В течение 20 минут скрипт прогонит профиль BasicLoad.start. В случае, если сервер виснет, на 21-й минуте прогон завершается в принудительном порядке. При этом будут получены все данные, успевшие попасть в лог.
Профиль нагрузки
Профиль нагрузки выглядит следующим образом:
Что есть что в этом коде: • exec представляет собой метод, по которому нагрузочный профиль выполняет лишь единичное действие. К примеру, отправляет запрос, открывает сокет, а также отправляет сообщение по сокету либо выполняет анонимную функцию; • http(samplerName: String).(get|post|put…) — выполняет отправку необходимого http-запроса. В функции метода http следует указывать относительный путь. Базовый url уже указан в процессе настройке http-конфига. Далее указываются параметры запроса — queryParam | formParam; • check — для проверки ответа. Мы можем выполнить проверку заголовка ответа. Также можно применять check, если надо проверить и сохранить тело ответа либо его отдельные элементы.
Любые действия мы можем исполнить посредством конструкции:
Внутри данного блока разработчик ограничен лишь возможностями языка программирования Scala. Сессия, с которой осуществляется работа, уникальна для каждого пользователя (потока). Именно поэтому есть возможность задавать для сессии параметры через set — тогда они будут доступны в других exec-блоках. А получить доступ к заданным параметрам вы сможете с помощью вызова:
Хотите знать о Gatling больше? Этот инструмент проходят на курсе «Нагрузочное тестирование» в OTUS!
Расчет квартирной электросети и выбор сечения кабеля
Для долговечной и надежной работы электропроводки необходимо правильно выбрать сечение кабеля. Для этого нужно рассчитать нагрузку в электросети. При проведении расчетов нужно помнить, что расчет нагрузки одного электроприбора и группы электроприборов несколько разнятся.
Расчет токовой нагрузки для одиночного потребителя
Выбор автомата защиты и расчет нагрузки для одиночного потребителя в квартирной сети 220 В довольно прост. Для этого вспоминаем главный закон электротехники – закон Ома. После чего установив мощность электроприбора (указывается в паспорте на электроприбор) и задавшись напряжением (для бытовых однофазных сетей 220 В) рассчитываем ток, потребляемый электроприбором.
Например, бытовой электроприбор имеет напряжение питания 220 В и паспортную мощность 3 кВт. Применяем закон Ома и получаем Iном = Рном/Uном = 3000 Вт/220 В = 13,6 А. Соответственно для защиты данного потребителя электрической энергии необходимо установить автоматический выключатель с номинальным током в 14 А. Поскольку таких не существует, то выбирается ближайший больший, то есть с номинальным током в 16 А.
Расчет токовой нагрузки для групп потребителей
Так как питание потребителей электроэнергии может осуществляться не только индивидуально, но и по группам, становится актуальным вопрос расчета нагрузки группы потребителей, так как они будут подключатся к одному автоматическому выключателю.
Для расчета группы потребителей вводят коэффициент спроса Кс. Он определяет вероятность одновременного подключения всех потребителей группы в течении длительного времени.
Значение Кс = 1 соответствует одновременному подключению всех электроприборов группы. Естественно, что включение одновременно всех потребителей электроэнергии в квартире вещь крайне редкая, я бы сказал невероятная. Существуют целые методики расчета коэффициентов спроса для предприятий, домов, подъездов, цехов и так далее. Коэффициент спроса квартиры будет различаться для разных комнат, потребителей, а также во многом будет зависеть от стиля жизни жильцов.
Поэтому расчет для группы потребителей будет выглядеть несколько сложнее, так как необходимо учитывать этот коэффициент.
Ниже в таблице приведены коэффициенты спроса для электроприборов небольшой квартиры:
Коэффициент спроса будет равен отношению приведённой мощности к полной Кс квартиры = 2843/8770 = 0,32.
Рассчитываем ток нагрузки Iном = 2843 Вт/220 В = 12,92 А. Выбираем автомат на 16А.
По приведенным выше формулам мы рассчитали рабочий ток сети. Теперь необходимо выбрать сечение кабеля для каждого потребителя или групп потребителей.
ПУЭ (правила устройств электроустановок) регламентирует сечение кабеля для различных токов, напряжений, мощностей. Ниже приведена таблица из которой по расчетной мощности сети и току выбирается сечение кабеля для электроустановок с напряжением 220 В и 380 В:
В таблице приведены только сечения медных проводов. Это связано с тем, что алюминиевые электропроводки в современных жилых домах не прокладываются.
Также ниже приведена таблица с номенклатурой мощностей бытовых электроприборов для расчета в сетях жилых помещений (из нормативов для определения расчетных нагрузок зданий, квартир, частных домов, микрорайонов).
Типичный вариант выбора сечения кабеля
В соответствии с сечением кабеля применяют автоматические выключатели. Чаще всего используют классический вариант сечения проводов:
- Для цепей освещения сечения 1,5 мм 2 ;
- Для цепей розеток сечения 2,5 мм 2 ;
- Для электроплит, кондиционеров, водонагревателей – 4 мм 2 ;
Для ввода в квартиру питания используют 10 мм 2 кабель, хотя в большинстве случаев хватает и 6 мм 2 . Но сечение 10 мм 2 выбирается с запасом, так сказать с расчетом на большее количество электроприборов. Также на входе устанавливается общее УЗО с током отключения 300 мА – его назначение пожарное, так как ток отключения слишком великим для защиты человека или животного.
Для защиты людей и животных применяют УЗО с током отключения 10 мА или 30 мА непосредственно в потенциально небезопасных помещениях, таких как кухня, ванна, иногда комнатные группы розеток. Осветительная сеть, как правило, УЗО не снабжается.
Расчетные нагрузки промышленных предприятий
Для электрических сетей расчетными нагрузками являются наибольшие возможные нагрузки длительностью не менее 30 мин.
Величина расчетной нагрузки зависит от числа и установленной мощности электроприемников, характера производства и степени автоматизации — производственного процесса.
1. Номинальная (установленная) мощность электроприемников
Номинальная активная мощность для одного электроприемника определяется по формулам:
для приемников освещения и электродвигателей при длительном режиме работы
для электродвигателей повторно-кратковременного режима работы
для трансформаторов электропечей
для трансформаторов сварочных машин и аппаратов и сварочных трансформаторов ручной сварки
где Рн — номинальная мощность приемника освещения или номинальная (паспортная) мощность электродвигателя для длительного режима работы, кВт;
ПВн — номинальная (паспортная) продолжительность включения, отн. ед.;
Рн.п — паспортная мощность электродвигателя при номинальной относительной продолжительности включения, кВт;
Sн — паспортная мощность трансформатора, кВА;
cos φн — коэффициент мощности электропечи, сварочного аппарата или сварочного трансформатора при номинальных условиях.
Номинальная мощность группы электроприемников определяется как сумма номинальных мощностей всех электроприемников:
где ру — номинальная мощность электроприемника, кВт;
n — общее число электроприемников в группе.
2. Расчетные нагрузки
Для одного электроприемника расчетная активная мощность принимается равной:
при длительном режиме работы
при повторно-кратковременном режиме работы
где р у — номинальная мощность электроприемника, кВт.
При повторно-кратковременном режиме работы электроприемника установленная мощность должна быть приведена к длительному режиму работы по одной из формул (3-2) или (3-4).
Расчетная реактивная мощность одного электроприемника определяется из выражения
где φ — фазовый угол тока электроприемника при режиме расчетной нагрузки.
Для группы электроприемников числом до 3 включительно активная и реактивная расчетные мощности определяются как суммы соответственно активных и реактивных нагрузок электроприемников группы.
При ориентировочных расчетах допускается определять расчетную активную мощность одной или нескольких групп электроприемников по формуле
где Кс и Ру — соответственно средняя величина коэффициента спроса и установленная мощность группы однотипных электроприемников;
n — общее число групп электроприемников. Реактивная расчетная мощность может быть определена из выражения
где φ — фазовый угол суммарного тока всей группы электроприемников для режима расчетной нагрузки.
Средние значения коэффициента спроса силовой нагрузки для некоторых производств приведены в табл. 3-1 и 3-2.
Коэффициент спроса осветительной нагрузки промышленных предприятий и относящихся к ним вспомогательных и бытовых сооружений принимается по табл. 3-3.
В общем случае коэффициент спроса группы электроприемников промышленного предприятия определяется как произведение коэффициентов использования (Ки) и максимума (Км):
Коэффициенты использования и максимума группы электроприемников соответственно равны:
где Рсм — средняя активная нагрузка рассматриваемой группы электроприемников за наиболее нагруженную смену предприятия, квт;
Р и Ру — соответственно расчетная и номинальная активная мощности той же группы электроприемников, квт.
Значения коэффициентов использования в зависимости от типа приводимых механизмов и характера производства приведены в табл. 3-1.
Значения коэффициента использования для нескольких групп электроприемников с разными значениями коэффициента использования определяются по формуле (3-12), в которой под Рсм следует понимать сумму средних нагрузок за наиболее нагруженную смену для всех групп электроприемников:
Коэффициент спроса группы электроприемников для ориентировочных расчетов может быть принят в зависимости от коэффициента использования по табл. 3-4.
3. Определение коэффициента максимума
При расчетах на стадии технического проекта или рабочих чертежей расчетные нагрузки определяются с учетом коэффициента максимума, величина которого зависит от коэффициента использования и эффективного числа электроприемников.
Под эффективным числом группы электроприемников с различной установленной мощностью и разными режимами работы понимается такое число приемников, одинаковых по мощности и однородных по режиму работы, которое обеспечивают ту же величину расчетной нагрузки, что и рассматриваемая группа различных по мощности и режиму работы электроприемников.
В общем случае эффективное число электроприемников может быть найдено из выражения
Эффективное число электроприемников может быть принято равным фактическому их числу в следующих случаях:
а) когда мощность всех приемников одинакова;
б) при коэффициенте использования Ки>0,8;
в) когда выполняются указанные в табл. 3-5 соотношения между коэффициентом использования и величиной отношения, равного:
где Ру.макс и Ру.мин — соответственно номинальные активные мощности наибольшего и наименьшего электроприемников в группе, квт.
При определении Ру.мин должны быть исключены наиболее мелкие электроприемники, суммарная мощность которых не превосходит 5% мощности всей группы приемников.
Когда указанные условия не выполняются, эффективное число электроприемников определяется в зависимости от величин Р*и n* , вычисляемых пo формулам (* — звездочки, поставленные под буквенными обозначениями, указывают на относительные величины).
где n — общее число электроприемников группы;
— сумма номинальных мощностей всей группы, квт;
— число приемников в группе, номинальная мощность каждого из которых больше или равна половине номинальной мощности наиболее мощного приемника в группе;
— сумма номинальных мощностей этих приемников, квт.
Мелкие электроприемники, суммарная мощность которых не превосходит 5% номинальной мощности всех электроприемников, при определении не учитываются.
В зависимости от величин р* и n * по табл. 3-6 находят величину относительного значения эффективного числа электроприемников:
и определяют эффективное число приемников умножением полученного значения на общее число электроприемников группы:
В зависимости от коэффициента использования Ки и эффективного числа приемников n э по табл. 3-7 определяется коэффициент максимума Км.
Величины расчетных активной и реактивной мощностей группы электроприемников определяется по формулам:
где Рсм — средняя активная мощность для группы электроприемников за наиболее нагруженную смену, кВт;
tgφ — соответствует характерному для данной группы электроприемников значению фазового угла в режиме максимальной активной мощности.
Полная расчетная мощность определяется из выражения
расчетный ток — по формуле
где U 1 — номинальное напряжение сети, кв.
Коэффициент мощности при режиме расчетной нагрузки равен:
При определении эффективного числа электроприемников для большого числа питающих линий, нескольких трансформаторных пунктов, распределительных подстанций и т. п. допускается применять упрощенную методику расчета, которая заключается в следующем.
Для отдельных линий или подстанций, для которых ранее были определены величины номинальной мощности и эффективного числа электроприемников вычисляются мощности условных электроприемников по формуле
где Ру и n э — соответственно номинальная мощность и эффективное число электроприемников рассматриваемой линии или подстанции.
При этом не учитывается нагрузка резервных электроприемников, ремонтных сварочных трансформаторов и других ремонтных электроприемников, пожарных насосов, а также электроприемников, работающих кратковременно (дренажные насосы, задвижки, вентили, щитовые затворы и т. п.). Нагрузка таких электроприемников учитывается только при расчете питающих эти приемники линий и линий, питающих силовые распределительные пункты, к которым они подключены.
Определение эффективного числа электроприемников, коэффициентов максимума и спроса для условных электроприемников, вычисленных по формуле (3-26), производится методом, изложенным выше для индивидуальных приемников.
При окончательном подсчете нагрузок должны быть учтены реактивные мощности присоединенных к сети батарей конденсаторов (мощности батарей статических конденсаторов учитываются со знаком «минус»), а также потери активной и реактивной мощности в понижающих трансформаторах.
Для электроприемников с малоизменяющейся во времени нагрузкой (насосы водоснабжения, вентиляторы, отопительные и нагревательные приборы, печи сопротивления и т. п.) коэффициент спроса может быть принят равным коэффициенту использования:
Изложенный метод определения расчетных нагрузок рекомендуется применять на всех ступенях и для всех элементов системы электроснабжения промышленных предприятий без введения в расчеты понижающих коэффициентов. Допускается применение коэффициента участия в максимуме в пределах 0,9—0,95 в случаях, когда при определении нагрузок на высших ступенях системы электроснабжения можно ожидать несовпадения во времени максимально загруженных смен, а также при ориентировочных расчетах.
В табл. 3-8 дано число часов использования максимальной мощности для осветительной нагрузки промышленных предприятий.
Пример 3-1.
В отделении цеха промышленного предприятия установлена группа электродвигателей на номинальное напряжение 380 в с длительным режимом работы. По величине коэффициента использования электроприемники разбиваются на три подгруппы, для каждой из которых в табл. 3-9 указаны число и мощность двигателей, суммарная номинальная мощность, величины коэффициентов использования и мощности.
Требуется определить расчетные нагрузки для всей группы электродвигателей отделения.