Azotirovanie.ru

Инженерные системы и решения
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Использование теплового действия электрического тока в устройстве теплиц и инкубаторов

Нагревание проводника при прохождении электрического тока. Расчет тепла, выделяющегося в проводе. Преимущества электрического обогрева теплиц и парников. Мощность нагревательного кабеля или ленты. Поддержание температуры и влажности воздуха в инкубаторе.

РубрикаФизика и энергетика
Виддоклад
Языкрусский
Дата добавления05.12.2015
Размер файла13,9 K

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

Тепловое действие электрического тока. Сущность закона Джоуля-Ленца. Понятие теплицы и парника. Эффективность использования тепловентиляторов и кабельного обогрева грунта теплиц. Тепловое воздействие электрического тока в устройстве инкубаторов.

презентация [50,7 K], добавлен 26.11.2013

Образование электрического тока, существование, движение и взаимодействие заряженных частиц. Теория появления электричества при соприкосновении двух разнородных металлов, создание источника электрического тока, изучение действия электрического тока.

презентация [54,9 K], добавлен 28.01.2011

Понятие электрического тока как упорядоченного движения заряженных частиц. Виды электрических батарей и способы преобразования энергии. Устройство гальванического элемента, особенности работы аккумуляторов. Классификация источников тока и их применение.

презентация [2,2 M], добавлен 18.01.2012

Условия, необходимые для существования электрического тока. Достоинства и недостатки параллельного соединения проводников. Единица силы тока. Работа электрического тока в замкнутой электрической цепи. Закон Ома для участка цепи. Химическое действие тока.

презентация [398,2 K], добавлен 07.02.2015

Определение плотности тока на поверхности и на оси провода. Численное значение частоты тока. Влияние обратного провода на поле в прямом проводе. Особенности распространения электромагнитной волны в проводящей среде. Плотность тока и напряженности поля.

задача [46,9 K], добавлен 06.11.2011

Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.

презентация [194,6 K], добавлен 15.05.2009

Сущность магнетизма, поле прямого бесконечно длинного тока. Форма правильных окружностей, описываемых силовыми линиями электрического поля элемента тока. Структура латентного поля тока. Закон Био-Савара, получение «магнитного» поля из электрического.

Тепловое действие электрического тока

Тепловое действие электрического тока впервые наблюдалось в 1801, когда током удалось расплавить различные металлы. Первое промышленное применение этого явления относится к 1808, когда был предложен электрозапал для пороха. Первая угольная дуга, предназначенная для обогрева и освещения, была выставлена в Париже в 1802. К полюсам вольтова столба, насчитывавшего 120 элементов, подсоединялись электроды из древесного угля, и когда оба угольных электрода приводились в соприкосновение, а затем разводились, возникал «сверкающий разряд исключительной яркости».

Содержимое работы — 1 файл

Тепловое действие электрического тока.docx

Тепловое действие электрического тока:

Тепловое действие электрического тока впервые наблюдалось в 1801, когда током удалось расплавить различные металлы. Первое промышленное применение этого явления относится к 1808, когда был предложен электрозапал для пороха. Первая угольная дуга, предназначенная для обогрева и освещения, была выставлена в Париже в 1802. К полюсам вольтова столба, насчитывавшего 120 элементов, подсоединялись электроды из древесного угля, и когда оба угольных электрода приводились в соприкосновение, а затем разводились, возникал «сверкающий разряд исключительной яркости».

Исследуя тепловое действие электрического тока, Дж.Джоуль (1818–1889) провел эксперимент, который подвел прочную основу под закон сохранения энергии. Джоуль впервые показал, что химическая энергия, которая расходуется на поддержание в проводнике тока, приблизительно равна тому количеству тепла, которое выделяется в проводнике при прохождении тока. Он установил также, что выделяющееся в проводнике тепло пропорционально квадрату силы тока. Это наблюдение согласуется как с законом Ома (V = IR), так и с определением разности потенциалов (V= W/q). В случае постоянного тока за время t через проводник проходит заряд q = It. Следовательно, электрическая энергия, превратившаяся в проводнике в тепло, равна:

Эта энергия называется джоулевым теплом и выражается в джоулях (Дж), если ток I выражен в амперах, R – в омах, а t – в секундах.

Предисловие.
Что же такое электрический ток и что необходимо для его
возникновения и существования в течение нужного нам времени?
Слово «ток» означает движение или течение чего-то. Электрическим током называется упорядоченное (направленное)движение заряженных частиц. Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Чтобы электрический ток в проводнике существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока.
В настоящее время человечество использует четыре основные источника тока: статический, химический, механический и полупроводниковый(солнечные батареи),
но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются на полюсах источника тока, — так называют места, к которым с помощью клемм или зажимов подсоединяют проводники. Один полюс источника тока заряжается положительно, другой — отрицательно. Если полюсы соединить проводником, то под действием поля свободные заряженные частицы в проводнике будут двигаться, возникнет электрический ток.

Электрический ток.
Источники электрического тока.

До 1650 года -времени, когда в Европе пробудился большой интерес к электричеству, — не было известно способа легко получать большие электрические заряды. С ростом числа ученых, заинтересовавшихся исследованиями электричества, можно было ожидать создания все более простых и эффективных способов получения электрических зарядов.
Отто фон Герике придумал первую электрическую машину.
Он налил расплавленную серу внутрь полого стеклянного шара, а затем, когда сера затвердела, разбил стекло, не догадываясь о том, что сам стеклянный шар с неменьшим успехом мог бы послужить его целям. Затем Герике укрепил серный шар так, как показано на рис.1, чтобы его можно было вращать рукояткой. Для получения заряда надо было одной рукой вращать шар, а другой -прижимать к нему кусок кожи. Трение поднимало потенциал шара до величины, достаточной, чтобы получать искры длиной в несколько сантиметров.
Эта машина оказала большую помощь в экспериментальном изучении электричества, но еще более трудные задачи «хранения» и «запасания» электрических зарядов удалось решить благодаря последующему прогрессу физики. Дело в том , что мощные заряды, которые можно было создавать в телах с помощью электростатической машины Герике, быстро исчезали. Вначале думали, что причиной этого
является «испарение» зарядов. Для предотвращения «испарения» зарядов
было предложено заключить заряженные тела в закрытые сосуды,
сделанные из изолирующего материала. Естественно, в качестве таких сосудов были выбраны стеклянные бутылки, а в качестве электризуемого материала — вода, поскольку ее было легко наливать в бутылки. Чтобы можно было
зарядить воду , не открывая бутылку, сквозь пробку был пропущен гвоздь. Замысел был хорош, но по причинам , в то время непонятным, прибор работал не
столь уж удачно. В результате интенсивных экспериментов вскоре же было открыто,
что запасенный заряд и тем самым силу электрического удара можно резко
увеличить , если бутылку изнутри и снаружи покрыть проводящим материалом,
например тонкими листами фольги. Более того, если соединить гвоздь с помощью хорошего
проводника со слоем металла внутри бутылки, то оказалось,
что можно вообще обойтись без воды. Это
новое «хранилище» электричества было изобретено в 1745 году в
голландском городе Лейдене
и получило название лейденской
банки (рис.2 ).
Первый кто открыл
иную возможность полу-чения
электричества, не-жели с помощью
электри-зации трением, был италь-янский
ученый Луиджи Гальвани (1737-1798). Он был по специальности биолог, но
работал в лаборатории, где прово-дились
опыты с электричеством. Гальвани
нблю-дал явление, которое было
известно многим еще до него; оно
заключалось в том, что
если ножной нерв мертвой
лягушки возбудить искрой
от электрической машины, то
начинала сокращаться вся лапка. Но однажды Гальвани заметил, что лапка пришла в
движение, когда с нервом лапки соприкасался только стальной скальпель.
Удивительнее всего было то ,
что между электрической
машиной и скаль-пелем не было никакого контакта.
Это поразительное открытие заставило Гальвани поставить ряд
опытов для обнаружения при-чины электрического тока. Один из экспериментов был
поставлен Гальвани с целью выяснить, вызывает ли такие же движения в лапке
электричество молнии. Для этого Гальвани подвесил на латунных крючках несколько
лягушачьих лапок в окне, закрытом железной решеткой. И он нашел, в
противоположность своим ожиданиям, что сокращения лапок происходят в любое
время, вне всякой зависимости от состояния погоды. Присутствие рядом
электрической машины или другого источника электричества оказалось не нужным.
Гальвани установил далее, что вместо железа и латуни можно использовать любые
два разнородных металла, причем комбинация меди и цинка вызывала явление в наиболее
отчетливом виде. Стекло, резина, смола, камень и сухое дерево вообще не давали
никакого эффекта. Таким образом, возникновение тока все еще оставалось тайной.
Где же появляется ток — только в тканях тела лягушки, только разнородных металлах
или же в комбинации металлов и тканей? К сожалению, Гальвани пришел к
заключению , что ток возникает исключительно в тканях тела лягушки. В
результате его современникам понятие «животного электричества» стало казаться
гораздо более реальным, чем электричества
какого-либо другого происхождения.

Читайте так же:
Количество теплоты электрического тока в чем измеряется

Другой итальянский ученый Алессандро
Вольта(1745-1827) окончательно доказал, что если поместить лягушачьи лапки в
водные растворы некоторых веществ, то в тканях лягушки гальванический ток не
возникает. В частности, это имело место для ключевой или вообще чистой воды;
этот ток появляется при добавлении к воде кислот, солей или щелочей.
По-видимому, наибольший ток возникал в комбинации меди и цинка, помещенных в
разбавленный раствор серной кислоты. Комбинация двух пластин из разнородных
металлов, погруженных в водный раствор щелочи, кислоты или соли, называется
гальваническим (или химическим)
элементом.

Если бы средствами для получения электродвижущей силы
служили только трение и химические процессы в гальванических элементах, то
стоимость электрической энергии, необходимой для работы различных машин, была
бы исключительно высокой. В результате огромного количества экспериментов учёными
разных стран были сделаны открытия, позволившие создать механические
электрические машины, вырабатывающие относительно дешёвую электроэнергию.

В начале 19 века Ганс Христиан Эрстед сделал
открытие совершенно нового электрического явления, заключавшегося в том, что
при прохождении тока через проводник вокруг него образуется магнитное поле.
Спустя несколько лет, в 1831 году, Фарадей сделал ещё одно открытие, равное по
своей значимости открытию Эрстеда. Фарадей обнаружил, что когда движущийся
проводник пересекает силовые линии магнитного поля, в проводнике наводится
электродвижущая сила, вызывающая ток в цепи, в которую входит этот проводник.
Наведённая ЭДС меняется прямо пропорционально скорости движения, числу проводников,
а также напряжённости магнитного поля. Иначе говоря, наведённая ЭДС прямо
пропорциональна числу силовых линий, пересекаемых проводником в единицу
времени. Когда проводник пересекает 100000000 силовых линий за 1 сек,
наведённая ЭДС равна 1 Вольту. Перемещая вручную одиночный проводник или проволочную катушку в магнитном поле,
больших токов получить нельзя. Более эффективным способом является намотка провода
на большую катушку или изготовление катушки в виде барабана. Катушку затем
насаживают на вал, располагаемый между полюсами магнита и вращаемый силой воды
или пара. Так, в сущности, и устроен генератор электрического тока, который относится
к механическим источникам электрического тока, и активно используется
человечеством в настоящее время.
Солнечную энергию люди используют с
древнейших времён. Ещё в 212 г. до н. э. с помощью концентрированных солнечных
лучей они зажигали священный огонь у храмов. Согласно легенде приблизительно в
то же время греческий учёный Архимед при защите родного города поджёг паруса
кораблей римского флота.

Солнце представляет собой удалённый от Земли на расстояние
149,6 млн км термоядерный реактор, излучающий энергию, которая поступает на
Землю главным образом в виде электромагнитного излучения. Наибольшая часть
энергии излучения Солнца сосредоточена в видимой и инфракрасной части спектра.
Солнечная радиация — это неисчерпаемый возобновляемый источник экологически
чистой энергии. Без ущерба для экологической среды может быть использовано 1,5
% всей падающей на землю солнечной
энергии, т.е. 1,62 *10 16 киловаттчасов в год, что эквивалентно огромному количеству
условного топлива — 2 *10 12 т.
Усилия конструкторов идут по пути использования фотоэлементов для
прямого преобразования солнечной энергии в электрическую. Фотопреобразователи,
называемые также солнечными батареями, состоят из ряда фотоэлементов,
соединенных последовательно или параллельно. Если преобразователь должен
заряжать аккумулятор, питающий, например, радиоустройство в облачное время, то
его подключают параллельно к выводам солнечной батареи ( рис. 3). Элементы
применяемые в солнечных батареях, должны обладать большим КПД, выгодной
спектральной характеристикой, малой
стоимостью, простой конструкцией и небольшой массой. К сожалению, только
немногие из известных на сегодня фотоэлементов отвечают хотя бы частично этим
требованиям. Это прежде всего некоторые виды полупроводниковых фотоэлементов.
Простейший из них — селеновый. К сожалению, КПД лучших селеновых фотоэлементов
мал(0,1. 1 %).
Основой солнечных батарей являются кремниевые фото-преобразователи,
имеющие вид круглых или прямоуголь-ных пластин толщиной 0,7 — 1 мм и площадью
до 5 — 8 кв.см. Опыт показал, что хорошие результаты дают небольшие элементы,
площадью около 1 кв. см.,
имеющие КПД около 10 %. Созданы также фотоэлементы из полупро- водниковых
металлов с теоретическим КПД 18 %. Кстати, практический КПД фотоэлектрических
преобразователей ( около 10 %) превышает КПД паровоза ( 8 %), коэффициент
полезного использования солнечной энергии в растительном мире (1 %), а также
КПД многих гидротехнических и ветровых устройств. Фотоэлектрические преобразователи
имеют практически неограниченную долговечность. Для сравнения можно привести
значения КПД различных источников электрической энергии ( в процентах) : теплоэлектроцентраль
— 20-30, термоэлектрический преобра-зователь — 6 — 8, селеновый фотоэлемент —
0,1 — 1, солнечная бата-рея — 6 — 11,
топливный элемент — 70, свинцовый аккумулятор — 80 — 90.

Читайте так же:
Лабораторная работа тепловое действие электрического тока

В 1989 г. фирмой Боинг
(США) создан двухслойный фотоэлемент, состоящий из двух полупроводников
— арсенида и антимонида галлия — с
коэффициентом преобразования солнечной энергии в электрическую, равным 37
%, что вполне сопоставимо с КПД
современных тепловых и атомных электростанций. Недавно удалось доказать, что
фотоэлектрический метод преобразования солнечной энергии теоретически позволяет
использовать энергию Солнца с КПД, достигающим 93 %! А ведь первоначально
считалось, что максимальный верхний предел КПД солнечных элементов составляет
не более 26 %, т.е. значительно ниже КПД высокотемпературных тепловых машин.

Солнечные батареи пока используются в основном в
кос-мосе, а на Земле только для электроснабжения автономных потребителей
мощностью до 1 кВт, питания радионавигационной
и маломощной радиоэлектронной
аппаратуры, привода экспериментальных электромобилей и самолётов. По мере
совершенствования солнечных батарей они будут находить применение в жилых домах
для автономного энергоснабжения , т.е. отопления и горячего водоснабжения, а
также для выработки электроэнергии для освещения и питания бытовых
электроприборов.
По тонкому проводнику подсоединённому к источнику тока течёт ток Проводник отсоединил. Простейшее термоэлектрическое устройства для получения электричества своими руками. Использование теплового действия электрического тока в устройстве теплиц. Реферат на тему электрический ток как фактор негативного воздействия. Что необходимо для возникновения и существования электрического тока. Реферат на тему электрический ток в металлах законы постоянного тока. Тепловые действия электрического тока их практическое использование. Тепловые действия электрического тока Их использование в технике. Практическое применение теплового действия электрического тока. Перевод электрических киловатт часов в тоны условного топлива. Электрический ток условие существование электрического тока. Электрический ток Условия существование электрического тока. Преобразование солнечной энергии в электрическую реферат. Тепловое действие тока его практическое использование. Реферат фотоэлементы виды характеристика применение.

Охрана труда

В начало разделаОхрана труда и электробезопасность → Основы электробезопасности

Действие электрического тока на организм человека

Электроэнергетическая отрасль (электрические станции, электрические сети) насыщена электроустановками, которые являются фактором повышенной опасности из?за возможности травмирующего действия на человека электрического тока со всеми вытекающими последствиями. Действие электрического тока на организм человека носит многообразный характер.

Электрический ток, проходя через тело человека, оказывает тепловое, химическое и биологическое воздействие.

Тепловое (термическое) действие проявляется в виде ожогов участка кожи, перегрева различных органов, а также возникающих в результате перегрева разрывов кровеносных сосудов и нервных волокон.

Химическое (электролитическое) действие ведет к электролизу крови и других содержащихся в организме человека растворов, что приводит к изменению их физико-химических составов, а значит, и к нарушению нормального функционирования организма.

Биологическое действие проявляется в опасном возбуждении живых клеток и тканей организма, в результате чего они могут погибнуть.

Степень опасного и вредного воздействия на человека электрического тока зависит от:

  1. параметров электрического тока, протекающего через тело человека (величины напряжения, частоты, рода тока приложенного к телу),
  2. пути тока через тело человека (рука-рука, рука-нога, нога-нога, шея-ноги и др.),
  3. продолжительности воздействия тока через тело человека,
  4. условий внешней среды (влажности и температуры),
  5. состояния организма человека (толщины и влажности кожного покрова, состояния здоровья и возраста).

Опасное и вредное воздействие на людей электрического тока проявляется в виде электрических ударов и электротравм.

Электрическим ударом называется такое действие электрического тока на организм человека, в результате которого мышцы тела (например, рук, ног и т.д.) начинают судорожно сокращаться.

В зависимости от величины электрического тока и времени его воздействия, человек может находиться в сознании или без сознания, но при этом обеспечивается нормальная работа сердца и дыхания. В более тяжелых случаях потеря сознания сопровождается нарушением работы сердечно-сосудистой системы человека и ведет даже к смертельному исходу. В результате электрического удара возможен паралич важнейших органов тела человека (сердца, легких, мозга и т.д.).

Электрической травмой называется такое действие электрического тока на организм человека, при котором повреждаются ткани и внутренние органы человека (кожа, мышцы, кости и т.п.).

Особую опасность представляют электротравмы в виде ожогов в месте контакта тела человека с токоведущими частями электроустановок или ожоги электрической дугой, в том числе металлизация кожи (металлизация кожи — это проникновение в верхние слои кожи мельчайших частичек металла при горении дуги). А также различные механические повреждения (ушибы, ранения, переломы), возникающие из-за резких непроизвольных движений человека при воздействии на него электрического тока. (Возможны вторичные последствия, вызванные падением с высоты, непроизвольными ударами).

Читайте так же:
Рассчитать провод для теплого пола

В результате тяжелых форм электрического удара и электротравм, человек может оказаться в состоянии клинической смерти – у него прекращается дыхание и кровообращение. При отсутствии медицинской помощи клиническая смерть может перейти в смерть биологическую. Однако в ряде случаев при правильной медицинской помощи (искусственном дыхании и массаже сердца) можно добиться оживления пострадавшего.

Непосредственными причинами смерти человека, пораженного электрическим током, является прекращение работы сердца, остановка дыхания и, так называемый, электрический шок.

Прекращение работы сердца возможно в результате непосредственного действия электрического тока на сердечную мышцу или, рефлекторно, из-за паралича нервной системы. При этом может наблюдаться полная остановка сердца или, так называемая, фибрилляция, при которой волокна сердечной мышцы (фибриллы) приходят в состояние быстрых хаотических сокращений.

Остановка дыхания из-за паралича мышц грудной клетки может быть результатом или непосредственного прохождения электрического тока через область грудной клетки или рефлекторно, вследствие паралича нервной системы.

Нервная реакция организма человека на возбуждение электрическим током, которая проявляется в нарушении нормального дыхания, кровообращения и обмена веществ называется электрическим шоком.

При длительном шоковом состоянии может наступить смерть. Если же вовремя оказать пострадавшему медицинскую помощь, то шоковое состояние может быть снято без последствий для человека.

Основным фактором, определяющим исход поражения человека электрическим током, является значение электрического тока, протекающего через тело человека. Величина тока в теле человека определяется приложенным напряжением и электрическим сопротивлением человека. Сопротивление человека зависит от ряда факторов. Необходимо иметь в виду, что различные ткани и органы человеческого организма обладают разным удельным сопротивлением. Наибольшую величину имеет сопротивление сухой кожи и костная ткань, тогда как сопротивление крови и спинномозговой жидкости невелико.

Роговой верхний слой кожи человека не имеет кровеносных сосудов и обладает очень большим удельным сопротивлением – около 10 8 Ом×см. Внутренние слои кожи, насыщенные кровеносными сосудами, железами и нервными окончаниями имеют незначительное удельное сопротивление.

Условно можно рассматривать тело человека как часть электрической цепи, состоящей из 3-х последовательно соединенных участков: кожа — внутренние органы – кожа.

Принципиальная электрическая схема замещения человека представлена на рис. 1.1.

Принципиальная электрическая схема замещения человека

Рис.1.1 Принципиальная электрическая схема замещения человека, где: Гк — сопротивление кожи; Ск — ёмкость между электродом и внутренней частью тела; Гвн — сопротивление внутренних органов

Величина емкости (ск) в общем незначительна и поэтому ее часто принебрегают, принимая во внимание лишь величину сопротивления 2rк +rвн.

Сопротивление тела человека (Rh) является величиной переменной, зависящей от состояния кожи человека (толщина рогового покроя кожи, влажности) и окружающей среды (влажности и температуры).

Поверхностный кожный покров, состоящий из наслоения ороговевших клеток, имеет большое сопротивление – в сухом состоянии кожи оно может иметь значения до 500 кОм. Повреждение рогового покрова кожи (порезы, царапины, ссадины) снижают сопротивление тела человека до 500-700 Ом, что пропорционально увеличивает опасность поражения человека электрическим током. Гораздо меньшее сопротивление электрическому току оказывают мышечные, жировые, костные ткани, кровь, нервные волокна. В целом сопротивление внутренних органов человека составляет 400-600 Ом.

В электрических расчетах за расчетное значение сопротивления тела человека принимается величина 1000 Ом.

Величина тока и напряжения

Основным фактором, влияющим на исход поражения человека электрическим током, является величина тока, которая согласно закону Ома зависит от величины приложенного напряжения и сопротивления тела человека. Эта зависимость не является линейной, так как при напряжениях около 100 В и выше наступает пробой верхнего рогового слоя кожи, вследствие чего электрическое сопротивление человека резко уменьшается (становится равным rвн), а ток возрастает. Напряжение, приложенное к телу человека, также влияет на исход поражения, но лишь постольку, поскольку оно определяет значение тока, проходящего через человека.

Род и частота электрического тока

Воздействие на человека постоянного и переменного тока различно — переменный ток промышленной частоты опаснее постоянного тока того же значения. Случаев поражения в электроустановках постоянным током в несколько раз меньше, чем в аналогичных установках переменного тока при более высоких напряжениях (более 300 В) постоянный ток более опасен, чем переменный (из?за интенсивного электролиза).

С увеличением частоты переменного тока полное сопротивление тела уменьшается, что приводит к увеличению тока через человека, а следовательно, повышается опасность поражения. Наибольшую опасность представляет ток с частотой от 50 до 1000 Гц; при дальнейшем повышении частоты опасность поражения уменьшается и полностью исчезает при частоте 45-50 кГц. Эти токи сохраняют опасность ожогов. Снижение опасности поражения током с ростом частоты становится практически заметным при 1-2 кГц.

Направление электрического тока — условия и причины возникновения

Как идет ток в цепи

Однако ток может возникнуть и в других средах, например, в газах. Как только физики открыли это явление, им предстояло определить, каково направление электрического тока.

Причины появления

Заряженные частицы начинают перемещаться благодаря действию различных источников питания. К их числу принадлежат батареи, аккумуляторы, генераторы и другие устройства, способные превращать всевозможные виды энергии в электрическую. Во время этих преобразований наглядно проявляется закон сохранения энергии. Частицы начинают движение в тот момент, когда электрическая цепь замыкается, что приводит к появлению в проводнике электрополя.

 направление тока в цепи

Именно оно и оказывает определенное воздействие на свободные частицы. Во время исследований ученые установили, что каждый источник электротока обладает электродвижущей силой (ЭДС). Следует помнить, что электроны не появляются благодаря источнику питания, а присутствуют в материале проводника. Они начинают двигаться под прямым воздействием электрополя, так как не связаны атомными связями и являются свободными.

В качестве примера можно привести замкнутую систему труб, воду в которых перекачивает насос. В зависимости от размеров труб и числа ответвлений, жидкость будет перемещаться в них с разной скоростью.

Все эти свойства присущи и течению электротока, которое изменяется в зависимости от сечения проводников.

Направление электротока

Необходимо понимать, что электроток вызывает не каждое перемещение заряженных частиц. Под воздействием тепла электроны также начинают двигаться, но их движение является хаотичным и не имеет конкретного направления. Если к тепловому воздействию на проводник добавить электрополе, то электроны начнут двигаться с определенной направленностью.

Читайте так же:
Какую теплоту за 1 минуту выделяет ток 15 а

Направление перемещения частиц, образующих электроток, зависит от их заряда:

  • положительные движутся от «плюса» к «минусу»;
  • отрицательные — от «минуса» к «плюсу».

 электрический ток это

Встречное перемещение частиц наблюдается в электролитических растворах и газах. Поэтому крайне важно точно установить, каково настоящее направление тока в цепи. В результате было принято решение, что движение положительных частиц является направлением электротока. Однако это утверждение не совпадает с действительностью, когда разговор идет о металлических проводниках.

Дело в том, что в них перенос заряда происходит из-за перемещения электронов, заряженных отрицательно. При этом точно известно, что они двигаются от минуса к положительному полюсу. В данном случае приходится считать направление тока противоположным перемещению заряженных частиц.

Несмотря на определенное неудобство, это правило четко говорит, что принимают за направление электрического тока и куда он течет.

Движение частиц в различных проводниках

Электроток способен возникнуть не только в металлах, но и других веществах. При этом они могут находиться в различных агрегатных состояниях. Чтобы лучше понять тему, стоит указать и движение тока в жидкостях, газах и твердых веществах:

Что принимают за направление электрического тока

  • Металлы обладают большим количеством свободных электронов, которые и являются основным источником электротока.
  • Электролиты представляют собой жидкости, которые способны проводить электроток. К этой группе проводников принадлежат растворы солей, кислот, щелочей. Оказавшись в воде, молекулы всех этих веществ расщепляются на ионы — заряженные отдельные атомы либо их группы. Ионы могут иметь положительный (катионы) либо отрицательный (анионы) заряд. Именно вследствие их направленного движения в растворах возникает электроток.
  • В плазме и газах электроток вызывает перемещение положительных ионов и электронов, имеющих отрицательный заряд.
  • В вакууме ток появляется благодаря вылетающим с поверхности металла электронам.

Ток, возникающий вследствие передвижения заряженных частиц внутри тел относительно определенной среды, называется электротоком проводимости.

Также существует определение конвекционного электротока, представляющего собой движение макроскопических частиц. Примером конвекционного тока являются дождевые капли во время молнии.

Действие тока

Зная, что принимается за направление тока, стоит выяснить и его действие. О появлении силы электротока можно узнать по показаниям специальных приборов. Однако они не всегда есть под рукой. В такой ситуации о наличии электротока можно судить по следующим явлениям:

 за направление тока принимают

  • Тепловое. Движение заряженных частиц приводит к нагреву материала проводника. Именно это явление используется в работе ламп освещения либо нагревательных приборов.
  • Магнитное. Если в цепи есть ток, то он создаст магнитное поле. Проверить этот факт можно с помощью компаса: если поднести его к проводу, то стрелка повернется перпендикулярно проводнику. Созданное током магнитное поле можно усилить, обмотав железный стержень проволокой. В результате получится электромагнит.
  • Химическое. Если ток протекает в электролитах, то химический состав раствора изменится. Например, в растворе CuSO4 электроток возникает благодаря движению положительных ионов Cu. Они перемещаются к отрицательному электроду, который со временем покроется слоем меди.

Сегодня сложно представить человеческую цивилизацию без электричества. Природу этих явления пытались установить многие ученые еще до открытия электронов. Первым физиком, выдвинувшим гипотезу о наличии двух типов зарядов, стал Бенджамин Франклин.

После открытия электронов не состыковка гипотезы Франклина была обнаружена, но ученые решили, что определяться направление электротока будет по-прежнему.

О природе электрического тока и основах электротехники

В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.

1. Что такое электрический ток.
«Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам» (с)

1.1 Пара общих слов по физике вопроса
Электрический ток — это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы — это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален — заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья — это объяснение физики на пальцах! Подробнее искать по «электронная теория проводимости»).

Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.

1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.

Бывают два типа генераторов — генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже

Читайте так же:
Урок физики тепловое действие электрического тока закон джоуля ленца

рис 1. Генератор напряжения величиной Uрис 1. Генератор напряжения величиной U

рис 2. Генератор тока величиной I рис 2. Генератор тока величиной I

На верхней картинке изображен генератор напряжения, на нижней — генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя — замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь

рис 3. Генератор напряжения величиной U с нагрузкой R1

рис 3. Генератор напряжения величиной U с нагрузкой R1

В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 — это клапан, открывающийперекрывающий трубу, сопротивление R1 — это кранвентиль который насколько-то приоткрыт. Этот крантель можно прикрыть — сопротивление увеличится, поток воды уменьшится. Можно открыть побольше — сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.

Рассмотрим теперь цепь с генератором тока.

рис 4. Генератор тока величиной I с нагрузкой R2

рис 4. Генератор тока величиной I с нагрузкой R2

Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью — ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью — ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники — Закон Ома. ( «С красной строки. Подчеркни» (с))

2. Закон Ома.

Сначала c точки зрения генератора напряжения

Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R
Теперь с точки зрения генератора тока

Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R

Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде — если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде

рис 5. Последовательное включение резисторов

рис 5. Последовательное включение резисторов

Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще — говорят «падение напряжения на резисторе», потому что «производит» напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.

Хотя пару важных практических случаев все таки рассмотрим.

1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни — это делитель напряжения.
( «С красной строки. Подчеркни» (с))

3. Делитель напряжения
Схема имеет вид.

рис 6. Делитель напряжения

рис 6. Делитель напряжения

Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.

Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология — сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.

Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).

Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.

Второй важный случай — учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.

Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.

Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!

В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector