Нагрев токоведущих частей при длительном протекании тока
Нагрев токоведущих частей при длительном протекании тока
Основные условия нагрева и охлаждения электрооборудования рассмотрим на примере однородного проводника, охлаждающегося равномерно со всех сторон.
Если через проводник, имеющий температуру окружающей среды, проходит ток, то температура проводника постепенно повышается, так как вся энергия потерь при прохождении тока переходит в тепло.
Скорость нарастания температуры проводника при нагреве током зависит от соотношения между количеством выделяющегося тепла и интенсивностью его отвода, а также теплопоглощающей способности проводника.
Количество тепла, выделенного в проводнике в течение времени dt, будет составлять:
где I — действующее значение тока, проходящего по проводнику, а; Ra — активное сопротивление проводника при переменном токе, ом; Р—мощность потерь, переходящих в тепло, вm. Часть этого тепла идет на нагрев проводника и повышение его температуры, а остальное тепло отводится с поверхности проводника за счет теплоотдачи.
Энергия, идущая на нагрев проводника, равна
где G — вес токоведущего проводника, кг; с — удельная теплоемкость материала проводника, em•сек/кг•град; Θ — перегрев — превышение температуры проводника по отношению к окружающей среде:
v и vо—температуры проводника и окружающей среды, °С.
Энергия, отводимая с поверхности проводника в течение времени dt за счет теплоотдачи, пропорциональна превышению температуры проводника над температурой окружающей среды:
где К — общий коэффициент теплоотдачи, учитывающий все виды теплоотдачи, Вm/см2 °С; F — поверхность охлаждения проводника, см2,
Уравнение теплового баланса за время неустановившегося теплового процесса можно записать в следующем виде:
Для условий нормального режима, когда температура проводника изменяется в небольших пределах, можно принять, что R, с, К представляют собой постоянные величины. Кроме того, следует учесть, что до включения тока проводник имел температуру окружающей среды, т. е. начальное превышение температуры проводника над температурой окружающей среды равно нулю.
Решение этого дифференциального уравнения нагрева проводника будет
где А — постоянная интегрирования, зависящая от начальных условий.
При t = 0 Θ = 0, т. е. в начальный момент нагреваемый проводник имеет температуру окружающей среды.
Тогда для t = 0 получаем
Подставляя значение постоянной интегрирования А, получаем
Из этого уравнения следует, что нагрев токоведущего проводника происходят по экспоненциальной кривой (рис. 1). Как видно, с изменением времени подъем температуры проводника замедляется и температура достигает установившегося значения.
Это уравнение дает температуру проводника в любой момент времени t с начала прохождения тока.
Величина установившегося перегрева может быть получена, если в уравнении нагрева принять время t =∞
где vу — установившаяся температура поверхности проводника; Θу — установившееся значение превышения температуры проводника над температурой окружающей среды.
Рис. 1. Кривые нагрева и охлаждения электрооборудования: а — изменение температуры однородного проводника при длительном нагреве; б — изменение температуры при охлаждении
На основании этого уравнения можно написать, что
Отсюда видно, что при достижении установившегося режима все выделяющееся в проводнике тепло будет отдаваться в окружающее пространство.
Вводя в основное уравнение нагрева Θу и обозначая через T =Gc/KF получим то же уравнение в более простом виде:
Величина T =Gc/KF называется постоянной времени нагрева и представляет собой отношение теплопоглощающей способности тела к его теплоотдающей способности. Она зависит от размеров, поверхности и свойств проводника или тела и не зависит от времени и температуры.
Для данного проводника или аппарата эта величина характеризует время достижения установившегося режима нагрева и принимается за масштаб измерения времени на диаграммах нагрева.
Хотя из уравнения нагрева следует, что установившийся режим наступает через неограниченно длительное время, на практике время достижения установившейся температуры принимают равным (3—4)•T, так как при этом температура нагрева превышает 98% своего окончательного значения Θу.
Постоянную времени нагрева для простых токоведущих конструкций можно легко вычислить, а для аппаратов и машин она определяется путем тепловых испытаний и последующих графических построений. Постоянная времени нагрева определяется как подкасательная ОТ, построенная по кривой нагрева, а сама касательная ОВ к кривой (от начала координат) характеризует подъем температуры проводника при отсутствии теплоотдачи.
При больших плотностях тока и интенсивном нагревании постоянную времени нагрева рассчитывают по уточненному выражению:
Если предположить, что процесс нагрева проводника происходит без отдачи тепла в окружающее пространство, то уравнение нагрева будет иметь следующий вид:
и температура перегрева будет нарастать по линейному закону, пропорционально времени:
Если в последнее уравнение подставить t =T, то видно, что за период, равный постоянной времени нагрева T =Gc/KF проводник нагревается до установившейся температуры Θу=I2Ra/KF, если за это время не будет происходить теплоотдача.
Величина постоянной времени нагрева для электрического оборудования колеблется от нескольких минут у шин до нескольких часов у мощных трансформаторов и генераторов.
В табл. 1 приводятся значения постоянных времени нагрева для шин некоторых типовых размеров.
При отключении тока прекращается подвод энергии к проводнику, т. е. Pdt=0, поэтому, начиная с момента выключения тока, проводник будет охлаждаться.
Расчет потребляемой мощности системы отопления
Эффективность работы отопительного оборудования напрямую связана с показателем тепловой мощности. От нее зависит комфортность и уют в помещении, обогреваемом посредством газа, дров или электричества. Поэтому пользователю важно знать, что собой представляет эта физическая величина и как она рассчитывается в каждом конкретном случае.
Определение понятия тепловой мощности
Под мощностью тепловыделения понимается количество теплоты, образующееся при преобразовании исходного носителя в энергию обогрева. Этот показатель отличен по величине для разных видов энергоносителей и рассчитывается для каждого из них индивидуально. Для газовых котлов он зависит от объема природного или сжиженного газа, подводимого к горелке в единицу времени.
При рассмотрении электрических аналогов этот параметр напрямую связан с мощностью электроэнергии, потребляемой агрегатом от сети 220 или 380 Вольт и его тепловым КПД. Соотношение тепловых и электрических мощностей задается специальными формулами, переводящими одно значение в другое.
Необходимые характеристики
Расчет тепловой мощности очень важен, так как его результаты необходимы для определения параметров выбираемого образца отопительного оборудования. К последним традиционно относятся:
- электрическая мощность агрегата для энергозависимых моделей;
- эффективность преобразования (или КПД котла);
- производительность, определяемая как количество тепла, формируемое устройством в единицу времени.
Модели котлов, подключаемых к электросети, относятся к оборудованию с потребляемой мощностью системы отопления, приводимой к количеству сжигаемого твердого или газообразного топлива. Для независимых от электричества образов этот параметр определяется напрямую – без перерасчета на затраченную электроэнергию.
Эффективность работы любого отопительного агрегата в значительной мере зависит от правильности выбора узла, обеспечивающего преобразование тепловой энергии (теплообменника). Грамотное решение этого вопроса позволяет получить требуемую теплопроизводительность и комфортно чувствовать себя в доме даже в самые морозные дни.
Избытки по тепловой мощности нежелательны, поскольку в этом случае часть расходуемых средств тратится впустую.
Факторы, влияющие на потребность в тепле
К основным факторам, определяющим потребность в тепловой энергии для помещения, относят:
- полный объем нагреваемых пространств;
- тип и качество утеплительного материала;
- климатическая зона, в которой располагается здание.
От объема помещения зависит количество воздушного пространства, нуждающегося в обогреве. Чем объемнее отапливаемое помещение, тем больше тепла потребуется для поддержания нужного микроклимата. При одинаковой высоте потолков (порядка 2,5 метров) обычно применяется упрощенный расчет, при котором за основу берется площадь комнаты.
О качестве утепления судят по способам теплоизоляции стен, а также по площади и комплекту окон и дверей. Учитывается также вид остекления – простой и тройной стеклопакет различны по тепловым потерям. Влияние климатического фактора сказывается при прочих равных условиях и учитывается как разность температур на улице и в комнате, где установлен котел.
Для прибора (батареи отопления)
При рассмотрении факторов, влияющих на мощность нагрева радиаторов отопления, выделяются три основных:
- показатель, соответствующий разнице нагрева теплоносителя и окружающей воздушной среды – с его повышением увеличивается тепловая мощность;
- площадь поверхности, отдающей тепло;
- теплопроводность используемого материала.
В этом случае наблюдается та же линейная зависимость: с увеличением поверхности батареи возрастает и величина тепловой отдачи. По этой причине многие современные отопительные радиаторы дополняются специальными алюминиевыми ребрами, повышающими общую теплоотдачу.
Зачем нужен расчет мощностного показателя
Потребность в определении мощности объясняется тем, что основные характеристики котла зависят от следующих факторов:
- особенности конструкции и назначение отапливаемого объекта;
- размеры и форма каждого помещения;
- общее число жильцов;
- месторасположение на карте страны.
Расчетная мощность теплопередачи используется для определения параметров котельного оборудования, планируемого к установке именно в этом помещении. Будущий котел должен обладать производительностью, достаточной для его обогрева даже в самые холодные зимние дни. Также важно предусмотреть возможность согласованного подключения агрегата к магистральному трубопроводу. Проведенные расчеты помогут определиться с его длиной и типоразмером труб, а также с типом радиаторов и параметрами циркуляционного насоса.
Расчет тепловой мощности
Для оценки тепловой энергии существует формула определения мощности через количество теплоты: N = Q/Δ t, где Q – это количество теплоты, выраженное в джоулях, а Δ t – время выделения энергии в секундах.
При оценочных расчетах также используется специальный коэффициент (КПД), указывающий на объем израсходованного тепла. Он находится как отношение полезной энергии к мощности тепловых потерь и выражается в процентах.
Объем затраченной энергии для помещений зависит от их строительных особенностей. Тот же показатель для батарей определяется используемыми при их изготовлении материалами и особенностями конструкции.
Более точный тепловой расчет
Грамотный выбор нагревательного оборудования возможен лишь после ознакомления с порядком расчета тепловой мощности, требуемой в каждом конкретном случае. Формула, используемая для его точного определения, выглядит так: P=V∆TK= ккал/час:
- V – объем обогреваемого помещения, измеряемый в метрах кубических.
- ∆Т – разница между температурой воздуха вне и внутри помещения.
- К – коэффициент потерь тепла.
Последняя величина зависит от материала стен. На основании проведенных специалистами измерений для неутепленной деревянной конструкции она составляет 3,0-4,0. Точные значения К для различных вариантов утепления приведены ниже:
- Для зданий из одинарной кирпичной кладки и с упрощенными конструкциями окон и крыши (так называемая «простая» теплоизоляция) К=2,0-2,9.
- Утепление среднего качества (К=1,0-1,9). Это типовая конструкция, под которой понимается двойная кладка, крыша с обычной кровлей, ограниченное количество окон.
- Высококачественное утепление (К=0,6-0,9), предполагающее кирпичные стены с усиленной теплоизоляцией, малое число окон со сдвоенными рамами, прочное основание пола и крышу с надежными теплоизоляторами.
В качестве примера будет рассмотрен точный расчет мощности для нагреваемого помещения объемом 5 х 16 х 2,5 = 200 метров кубических. ∆Т определяется как разница показателя снаружи -20 °С и внутри помещения +25 °С. Принимается вариант со средней удельной теплоизоляцией (К=1-1,9). По усредненным условиям эксплуатации берем 1,7. Рассчитываем: 200 х 45 х 1,7 = 15 300 ккалчас. Исходя из того, что 1 кВт = 860 ккалчас, в итоге имеем: 15 300860 = 17,8 кВт.
Сколько тепла в кВт вам требуется для обогрева дома — проверяем на калькуляторе!
Если мы собираемся по максимуму экономить в той или иной сфере жизни, то необходимо хорошо представлять: куда, в каких количествах и на что тратятся наши деньги. А одной из наиболее чувствительных статей расходов семейного бюджета в наше время становятся коммунальные платежи. И если с затратами на электроэнергию относительная ясность имеется, так как по большей части все на виду и довольно понятно, то с отоплением – несколько сложнее.
Сколько тепла нам требуется для обогрева жилья?
Неважно, какая схема или система применяется для этих целей, в первую очередь необходимо обладать информацией, сколько тепла нам требуется для обогрева жилья? Да, вопрос звучит именно так, пока без перехода в «денежную плоскость». Да мы и не сможет спрогнозировать финансовые расходы, пока не выразим требуемую тепловую энергию в каких-то понятных величинах. Например, в киловаттах.
Вот этим и займемся сегодня.
Немного общей информации – что такое требуемое количество тепла?
Очень вкратце, все это и так известно – просто требуется небольшая систематизация.
Современному человеку для комфортного проживания требуется создание определённого микроклимата, одной из важнейших составляющих которого является температура воздуха в помещении. И хотя «тепловые пристрастия» могут разниться, можно смело утверждать, что для большинства людей эта зона «температурного комфорта» лежит в диапазоне 18÷23 градуса.
Но когда на улице, например, отрицательная температура, то естественные термодинамические процессы стремятся все подвести под «общую планку», и тепло начинает из жилой зоны уходить. Тепловые потери – это совершенно нормальное с точки зрения физики явление. Вся система утепления жилья направлена на максимальное снижение таких потерь, но полностью их устранить невозможно. А отсюда вывод — отопление дома как раз и предназначено для восполнения этих самых тепловых потерь.
От тепловых потерь – никуда не деться, но очень важно хотя бы постараться свести их к возможному минимуму.
Как определиться с ними их количественно?
Простейший способ расчета необходимой тепловой мощности основывается на утверждении, что на каждый квадратный метр площади требуется 100 ватт тепла. Или — 1 кВт на 10 м².
Но даже не будучи специалистом, можно задуматься — а как такая «уравниловка» сочетается со спецификой конкретных домов и помещений в них, с размещением зданий на местности, с климатическими условиями региона проживания?
Так что лучше применить иной, более «скрупулезный» метод подсчета, в котором будет приниматься во внимание множество различных факторов. Именно такой алгоритм и заложен в основу предлагаемого ниже калькулятора.
Важно – вычисления проводятся для каждого отапливаемого помещения дома или квартиры отдельно. И лишь в конце подбивается общая сумма потребной тепловой энергии. Проще всего будет составить небольшую таблицу, в строках которой перечислить все комнаты с необходимыми для расчетов данными. Тогда, при наличии у хозяина под рукой плана своих жилых владений, много времени вычисления не займут.
И еще одно замечание. Результат может показаться весьма завышенным. Но мы должны правильно понимать – в итоге показывается то количество тепла, которое требуется для восполнения теплопотерь в самых неблагоприятных условиях. То есть – для поддержания температуры в помещениях +20 ℃ при самых низких температурах на улице, характерных для региона проживания. Иными словами — на пике зимних холодов в доме будет тепло.
Но такая супер-морозная погода, как правило, стоит весьма ограниченное время. То есть система отопления будет по большей части работать на более низкой мощности. А это означает, этот никакого дополнительного запаса закладывать особого смысла нет. Эксплуатационный резерв мощности будет и без того внушительным.
Ниже расположен калькулятор, а под ним будут размещены необходимые краткие пояснения по работе с программой.
Калькулятор расчета необходимой тепловой мощности для отопления помещений
Пояснения по проведению расчетов
Последовательно уносим данные в поля калькулятора.
- Первым делом определим климатические особенности – указанием примерной минимальной температуры, свойственной региону проживания в самую холодную декаду зимы. Естественно, речь идет о нормальной для своего региона температуре, а не о каких-то «рекордах» в ту или иную стороны.
Кстати, понятное дело, это поле не будет меняться при расчетах для всех помещений дома. В остальных полях – возможны вариации.
- Далее идет группа из двух полей, в которых указываются площадь помещения (точно) и высота потолков (выбор из списка).
- Следующая группа данных учитывает особенности расположения помещения:
— Количеств внешних стен, то есть контактирующих с улицей (выбор из списка, от 0 до 3).
— Расположение внешней стены относительно стороны света. Есть стены, регулярно получающие заряд тепловой энергии от солнечных лучей. Но северная стена, например, солнца не видит вообще никогда.
Главный редактор проекта Stroyday.ru. Инженер.
— Если на местности, где расположен дом, выражено преобладание какого-то направления зимнего ветра (устойчивая роза ветров), то это тоже можно принять во внимание. То есть указать, находится ли внешняя стена на наветренной, подветренной или параллельной направлению ветра стороне. Если таких данных нет, то оставляем по умолчанию, и программа рассчитает, как для самых неблагоприятных условий.
— Далее, указывается, насколько утеплены стены. Выбирается из трех предложенных вариантов. Точнее даже, из двух, так как в доме с вообще неутепленными стенами затевать отопление — абсолютная бессмыслица.
— Два схожих поля поросят указать, с чем соседствует помещение «по вертикали», то есть что расположено сверху и снизу. Это поможет оценить размеры теплопотерь через полы и перекрытия.
- Следующая группа касается окон в помещении. Здесь важно и их количество, и размеры, и тип, в том числе – особенности стеклопакетов. По совокупности этих данных программа выработает поправочный коэффициент к результату расчетов.
- Наконец, на количество теплопотерь серьёзно влияет наличие в комнате дверей, выходящих на улицу, на балкон, в холодный подъезд и т.п. Если дверями регулярно в течение дня пользуются, то любое их открытие сопровождается притоком холодного воздуха. Понятно, что это требует возмещения в форме дополнительной тепловой мощности.
Все данные внесены – можно «давить на кнопку». В результате пользователь сразу получит искомое значение тепловой мощности для конкретного помещения.
Как уже говорилась, сумма всех значений даст результат за весь дом (за квартиру) в целом, в киловаттах.
По этой величине, считая ее минимумом, подбирают, кстати, и котел отопления. И именно эта суммарная величина понадобится, когда придёт время считать реальные денежные расходы на эксплуатацию системы отопления.
А данные по каждой из комнат тоже весьма полезны — для подбора и расстановки радиаторов отопления, или для выбора подходящей модели электрического обогревателя.
Количество теплоты и удельная теплоемкость
Вместо словосочетания «тепловая энергия» физики говорят сокращенно: «теплота».
Удобно сравнивать между собой величины, которые измерены численно. Поэтому, физики говорят о количестве тепловой энергии, или количестве теплоты.
Что такое количество теплоты
Рассмотрим чашку, в которой находится обыкновенная вода комнатной температуры.
Вычислим внутреннюю энергию холодной воды в чашке, получим число, которое можно обозначить так:
(large U_
Нагреем воду в чашке. Молекулы нагретой воды будут двигаться быстрее. Значит, горячая вода обладает большим количеством внутренней энергии.
Теперь посчитаем внутреннюю энергию горячей воды в чашке. Полученное число обозначим, как
(large U_
Найдем разницу внутренней энергии для горячей и холодной воды.
Примечание: Вместо слова «разница» математики скажут «разность».
Мы получим еще одно число. Обозначим его символом Q. Число Q называют количеством теплоты. Именно эту тепловую энергию вода получила во время нагревания.
Примечание: Когда горячая вода остынет, она отдаст ровно столько тепловой энергии, сколько получила во время нагревания. Потому, что выполняется закон сохранения тепловой энергии.
(large Q left( text <Дж>right) ) – тепловая энергия, количество теплоты.
Теплота, как и любая энергия, измеряется в системе СИ в Джоулях, в честь английского физика Джеймса Джоуля.
Примечание: Количество теплоты, так же, измеряют в Калориях.
Калория – это тепловая энергия, затраченная на нагревание 1 грамма воды на 1 градус Цельсия.
Джоуль и Калория связаны так:
От чего зависит количество теплоты
Количество теплоты, требуемое для нагревания тела, зависит от нескольких параметров.
От массы вещества
Нальем в одну кастрюльку 1 кг воды, а в другую, точно такую же кастрюльку – 2 килограмма воды.
Пусть, начальная температура воды о обеих кастрюльках равна +20 градусам Цельсия.
Будем нагревать эти кастрюльки по очереди на газовой плите, не меняя интенсивность огня конфорки.
Предположим, нам нужно повысить на 50 градусов Цельсия температуру воды в каждой кастрюльке.
Примечание: После нагревания воды на 50 градусов, конечная температура воды в каждой кастрюльке будет равна 70 градусам.
Чтобы нагреть на 50 градусов 1 килограмм воды, потребуется время. Однако, чтобы нагреть на этой же конфорке 2 килограмма воды на 50 градусов, потребуется больше времени.
Значит, количество теплоты, полученное водой, зависит от массы вещества, которое мы хотим нагреть.
Математики запишут фразу «количество теплоты зависит от массы» так:
Символом f обозначается зависимость.
(large m left( text <кг>right) ) – масса нагреваемого вещества.
От разницы температур
Теперь возьмем две кастрюльки, и нальем в них по 1 кг воды. Начальная температура воды в кастрюльках одинаковая и равна +20 градусов Цельсия.
Одну кастрюльку будем нагревать дольше другой. Поэтому, температура воды будет выше в той кастрюльке, которую дольше нагревали.
Так как температура повысилась больше в кастрюльке, которую дольше нагревали, то физики скажут, что воде в этой кастрюльке передали большее количество теплоты.
Значит, количество теплоты зависит от разницы (т. е. разности) между начальной и конечной температурой.
(large t_
(large t_
(large Delta t left( text <град>right) ) – разность температуры;
Математики фразу «количество теплоты зависит от разности температур» запишут так:
[large Q = f(Delta t)]
Символ f обозначает, что Q зависит от разницы температур.
От вида вещества
Теперь будем нагревать 1 килограмм воды и 1 килограмм подсолнечного масла.
Первоначальная температура каждого вещества +20 градусов Цельсия.
Измерим через 5 минут нагревания температуру воды и температуру масла.
Оказывается, за 5 минут масло нагреется до более высокой температуры. При этом и масло, и вода, получили одинаковое количество теплоты.
Значит, количество теплоты зависит от того, из какого вещества состоит тело.
Какие величины называют удельными
Физики часто применяют удельные величины, так как они достаточно удобны для вычислений.
Удельная величина – величина, приходящаяся на единицу массы, длины, площади, или объема.
В обычной жизни мы, так же, пользуемся удельными величинами. К примеру, цена товара – это удельная величина, так как она приходится на единицу товара. Зная количество товара, легко посчитать общую цену покупки.
Например, булочка стоит 20 рублей. Нужно купить 3 булочки. Общую сумму денег найдем, перемножив цену одной булочки (удельную величину) на количество штук.
Известно, что при горении топлива выделяется энергия. Удельная теплота сгорания и количество сгоревших килограммов топлива помогут посчитать выделившуюся тепловую энергию.
Что такое удельная теплоемкость
Возьмем 1 килограмм вещества и нагреем его на 1 градус Цельсия. Тепловая энергия, которую мы для этого затратили, называется удельной теплоемкостью.
Удельная теплоемкость – это энергия, затраченная для нагревания 1 килограмма на 1 градус.
Эту энергию обозначают латинским символом «c». Измеряют ее в Джоулях, деленных на килограмм и градус.
(large c left( frac
Примечания:
- Вместо слов «тепловая энергия» физики скажут «количество теплоты»;
- Различные вещества обладают разными теплоемкостями;
- Одно и то же вещество в различных агрегатных состояниях (ссылка), будет иметь разные теплоемкости.
Удельные теплоемкости воды в различных агрегатных состояниях
В твердом состоянии (лед), вода будет иметь такую теплоемкость:
В жидком состоянии (вода), такую:
В газообразном состоянии (пар) при температуре 100 градусов Цельсия, такую:
Примечание: Удельные теплоемкости различных веществ можно найти в школьном справочнике физики.
Как связаны и чем отличаются количество теплоты и удельная теплоемкость
Будем рассматривать такие процессы, как нагревание и охлаждение.
- нагревание — тело получает тепловую энергию (количество теплоты).
- охлаждение – тело отдает тепловую энергию в окружающее пространство.
Благодаря процессам нагревания и охлаждения мы можем обогреваться зимой с помощью русской печи. Сначала печь получит количество теплоты (тепловую энергию) от сгорающего топлива — дров. А затем, будет остывать и отдавать это количество теплоты всем телам, находящимся в помещении.
Отличия удельной теплоемкости от количества теплоты
Запомнить, что такое количество теплоты, и чем оно отличается от удельной теплоемкости, можно так (рис. ):
- Количество теплоты – это энергия нагревания (охлаждения) нескольких килограммов на несколько градусов.
- Удельная теплоемкость – это энергия нагревания 1-го килограмма на 1 градус.
Связь количества теплоты и удельной теплоемкости — формула
- удельная теплоемкость вещества;
- количество килограммов вещества;
- количество градусов, на которое нужно нагреть вещество,
то легко посчитать общую тепловую энергию – т. е. количество теплоты.
Для этого используем формулу:
(large Q left( text <Дж>right) ) – количество теплоты, т. е. общая тепловая энергия;
(large c left( frac
(large m left( text <кг>right) ) – масса вещества;
(large t_
(large t_
Как по графику нагревания или охлаждения определить удельную теплоемкость
На примере покажем, как находить удельную теплоемкость по графику нагревания или охлаждения тела.
Дано твердое тело массой 2 килограмма. На рисунке 5 указано, как зависит температура этого тела от полученного количества теплоты. По горизонтали отложено количество теплоты, а по вертикали – температура некоторого тела, находящегося в твердом состоянии.
Определить удельную теплоемкость вещества, из которого состоит данное твердое тело.
Решение:
Тело нагрелось от (large t_ <1>= 0 left( С right) ) до температуры (large t_ <2>= 60 left( С right) );
Разность температур равна 60 градусам Цельсия.
Масса тела 2 килограмма.
Полученное количество теплоты (large Q = 15000 left( text <Дж>right) ).
Выпишем формулу, по которой можно посчитать тепловую энергию Q:
Подставим теперь значения в эту формулу для определения количества теплоты:
[large 15000 = c cdot 2 cdot 60 ]
Разделим обе части уравнения на число 10:
[large 1500 = c cdot 2 cdot 6 ]
Теперь разделим обе части уравнения на число 6:
[large 250 = c cdot 2 ]
Разделив обе части на число 2, получим удельную теплоемкость твердого вещества:
Ответ: Удельная теплоемкость твердого вещества (large 125 left( frac
Примечание: Тела могут обмениваться тепловой энергией с другими телами. Обмен энергией прекратится при наступлении теплового равновесия. Для решения задач нужно использовать удельные теплоемкости материалов, из которых изготовлены тела. А чтобы рассчитать переданное или полученное телом количество теплоты, нужно уметь применять закон сохранения энергии и составлять уравнение теплового баланса.
В чем измеряется мощность электрического тока
Для практических расчетов неудобно пользоваться базовым определением. Ниже приведены формулы, которые помогут узнать потребление электричества с использованием стандартных параметров источника питания и паспортных данных подключенных устройств. При отсутствии этих сведений в сопроводительной документации можно получить необходимые данные на официальном сайте производителя либо с помощью специальных измерений.
Мощность электрического тока через напряжение и ток
Так как разница потенциалов (F1-F2) соответствует напряжению (U), несложно сделать вывод о допустимости применения соотношений, определенных в законе Ома. Мощность (P) дополнительно характеризуется силой тока (I) в определенном участке цепи. Итоговое выражение:
Обозначение мощности по международной системе СИ – ватты (Вт). Для маленьких и больших величин пользуются кратными приставками: «милли-», «микро-», «мега-» и другими. Несложно понять, как обозначается мощность:
5 800 Вт = 5,8 киловатт = 5,8 кВт.
Мощность электрического тока через напряжение и сопротивление
По аналогии с предыдущими рассуждениями можно выразить мощность следующим образом:
Чему равна мощность электрического тока через ток и сопротивление
Путем несложных преобразований определяют потребление энергии следующим образом:
В этом и предыдущем разделе показана зависимость мощности от номинала подключенного резистора. При рассмотрении полной цепи учитывают внутреннее сопротивление источника и проводимость соединений.
Чтобы не ошибаться при расчетах, можно скопировать эту картинку с основными формулами
Что такое мощность в электричестве
Механическая мощность как физическая величина равна отношению выполненной работы к некоторому промежутку времени. Поскольку понятие работы определяется количеством затраченной энергии, то и мощность допустимо представить как скорость преобразования энергий. Разобрав составляющие механической мощности, рассмотрим из чего складывается электрическая. Напряжение — выполняемая работа по перемещению одного кулона электрического заряда, а ток — количество проходящих кулонов за одну секунду. Произведение напряжения на ток показывает полный объем работы, выполненной за одну секунду.
Мощность электрического тока – количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт).
Проанализировав полученную формулу, можно заключить, что силовой показатель зависит одинаково от тока и напряжения. То есть, одно и тоже значение возможно получить при низком напряжении и большом тока, или при высоком напряжении и низком токе. Пользуясь зависимостью мощности от напряжения и силы тока, инженеры научились передавать электричество на большие расстояния путем преобразования энергии на понижающих и повышающих трансформаторных подстанциях.
Наука подразделяет электрическую мощность на:
- активную. Подразумевает преобразование мощности в тепловую, механическую и другие виды энергии. Показатель выражают в Ваттах и вычисляют по формуле U*I;
- реактивную. Эта величина характеризует электрические нагрузки, создаваемые в устройствах колебаниями энергии электромагнитного поля. Показатель выражается как вольт-ампер реактивный и представляет собой произведение напряжения на силу тука и угол сдвига.
Для простоты понимания смысла активной и реактивной мощности, обратимся к нагревательному оборудованию, где электрическая энергия преобразуется в тепловую.
Материал в тему: что такое электрическая цепь.
Как измерить мощность
Знать силовые характеристики бытового оборудования необходимо всегда. Это требуется для расчета сечения проводки, учета расхода электроэнергии или электрификации дома. До начала монтажных работ такую информацию можно получить только путем сложения показателей мощности каждого отдельного устройства, добавив 10% запаса.
Будет интересно➡ Что такое электрическое поле: объяснение простыми словам
Определить потребляемую нагрузку дома поможет счетчик. Прибор показывает сколько киловатт было потрачено за один час работы оборудования. И для того чтобы убедиться в правильности показаний, владелец квартиры может проверить точность устройства с помощью электронных средств измерения. Сюда относится амперметр, вольтметр или мультиметр.
Также существуют ваттметры и варметры, которые показывают результаты измерений в ваттах. Во время снятия показания включенной оставить только активную нагрузку как лампочки и нагреватели. Далее померить токовое напряжение. В конце сверить показания счетчика с полученным результатом вычислений.
Мгновенная электрическая мощность
КПД источника тока
В соответствии с названием, величину данного параметра определяют мгновенные значения измеряемых величин. Основное определение можно рассмотреть с учетом перемещения единичного элементарного заряда (q), которое выполняется за время Δt. На выполнение работы будет затрачена мощность эл тока PF1-F2 = U/ Δt или (U/ Δt) * q = U * (q/ Δt) c учетом перемещаемого заряда. Так как ток по стандартному определению равен заряду, который переходит из F1 в F2 (I = q/ Δt), несложно вывести итоговую формулу:
Принимая бесконечно малым интервал времени, можно получить соответствующее определение мощности для участка цепи:
Аналогичные выводы делают с учетом соответствующей величины сопротивления:
P (t) = (I (t))2 * R = (U(t))2/ R.
К сведению. Из последних формул понятно, что сопротивление не зависит от времени.
В чем измеряется электрическая мощность
Мощность — это энергия за единицу времени. Единица СИ для мощности — это ватт (Вт), который равен джоулю в секунду (Дж/с), при этом джоуль — единица СИ для энергии, а секунда — единица СИ для времени.
Единицы мощности
Умножение киловатта на час дает киловатт-час (кВт • ч), единицу, часто используемую электроэнергетическими компаниями для представления количества электрической энергии, произведенной или предоставленной потребителям. Аналогичным образом энергоемкость батарей нужно измерять в единицах ампер-часов (А-ч) или для переносных батарей в миллиамперах-часах (мА-ч).
В единицах СИ ватт имеет обозначение W. Имя сохранилось в знак признания Джеймса Уатта, который ввел термин «лошадиная сила» — старая единица мощности.
Единицы преобразования энергии:
- Лошадиные силы (HP) — 746 Вт;
- килоВатты (кВт) — 1×1000 Вт;
- мегаватты (МВт) −1×1000000 Вт;
- гигаватт (ГВт) — 1×1000000000 Вт.
Вам это будет интересно Соединение проводников
Что такое мощность постоянного тока
Приведенные выше формулы без корректирующих коэффициентов применяют для расчета схем с подключением к источнику постоянного тока. С помощью обычного мультиметра при соответствующем положении переключателя определяют сопротивление подключенной нагрузки. Последовательным подключением измерительного прибора проверяют силу тока, параллельным – напряжение. Чтобы выяснить, сколько будет потреблять такая схема, пользуются формулами:
P = I * U или P = U2/ R = I2 * R.
Так можно измерять постоянный ток мультиметром
К сведению. При подключении АКБ в режиме зарядки направления тока в источнике и нагрузке совпадают. Мощность электрическая в этом случае потребляется нагрузкой. При противоположном направлении токов энергия поглощается источником ЭДС.
Мощность переменного тока
В таких цепях применять формулы для мгновенных величин нельзя, так как итоговое значение будет изменяться от минимума до максимума с частотой сети. В стандартной однофазной сети 220 V поддерживается синусоидальная форма сигнала 50 Гц.
Однако допустимо использование рассмотренных выше простых соотношений (P = U * I и других) при подключении нагрузки с резистивными характеристиками:
- ТЭНов стиральных машин;
- нагревательных спиралей инфракрасных излучателей;
- лампочек с вольфрамовой нитью накаливания.
С помощью этого выражения выясняют, какая мощность будет выделяться в нагрузке.
Активная мощность
Ситуация меняется радикальным образом, если включается мощный электродвигатель или конденсатор. Подобные нагрузки формируют колебательный контур, который обменивается энергией с источником питания. Полезные функции в данном случае выполняются только активной компонентой (Pакт). Ее вычисляют следующим образом:
- U * I – постоянный ток (переменный при резистивной нагрузке);
- U * I * cos ϕ – для
Реактивная мощность
Этот параметр, несмотря на отсутствие полезной работы, следует учитывать для корректной оценки важных параметров сети. Дело в том, что проводники нагреваются при пропускании тока в любом направлении. Циклические энергетические воздействия при достаточно большой интенсивности:
- разрушают жилы и защитные оболочки кабелей;
- провоцируют короткое замыкание;
- повреждают обмотки электроприводов и трансформаторы.
Реактивная составляющая определяется формулой:
Pреакт = U * I * sin ϕ.
Она принимает отрицательное (положительное) значение при подключении нагрузки с емкостными (индукционными) характеристиками, соответственно.
В чем измеряется мощность тока для подобных ситуаций, понятно из определения. Так как речь идет об изменении параметров электрического (магнитного) поля, итоговый результат обозначают вольт-амперами реактивными (единица измерения сокр. – вар).
Полная мощность
Если рассматриваемые величины выразить векторами, образуется треугольник. Длина сторон будет соответствовать потреблению энергии определенной составляющей. Угол между полной (Pполн) и активной мощностью (ϕ) используется в расчетах для вычислений. Общая формула:
Pполн = √((Pакт)2 + (Pреакт)2).
Комплексная мощность
Потребление энергии можно выразить при необходимости комплексными величинами. Используют базовые соотношения. Вместо сопротивления применяют импеданс.
Как рассчитать электрическую мощность в быту
Теоретическая электротехника рассматривает показатели как мгновенные величины, которые зафиксированы в некоторый временной отрезок. Если мгновенная мощность постоянной сети остается неизменной в любой точке цепи и во всех интервалах времени, то для переменной этот показатель будет всегда неодинаковым.
Отсюда получим формулы для расчета мощности (P):
- U*I;
- I2*R;
- U*I*cos(фи).
В интернете сейчас есть онлайн-калькуляторы, которые сами посчитают и выдадут результат. Пользователю нужно лишь подставить значения характеристик, которые находятся на шильдике устройства.
Измерения
Как показано выше, некоторые исходные данные можно получить в ходе практических измерений. Ниже отмечены особенности типовых специализированных приборов.
Прямые замеры
Ваттметры выпускают в разных модификациях для сетей
380V. Соответствующие коррекции делают в процессе выполнения рабочих операций. Следует подключать щупы с учетом инструкций производителя и соответствующего расположения проводников. Как правило, в конструкциях приборов применяют две катушки с параллельным и последовательным подсоединением к нагрузке. Для повышенной точности пользуются профессиональными приборами «лабораторной» категории.
Косвенные замеры
Эти операции выполняют с применением мультиметров. Измеряют сопротивление, ток и напряжение, после чего вычисляют мощность.
Фазометры
С помощью этих приборов измеряют фазовый сдвиг между несколькими электрическими параметрами. Таким аппаратом можно определить cos ϕ, если паспортное значение отсутствует в сопроводительных документах к оборудованию.
Регулирование cos
Отмеченное выше негативное влияние реактивных составляющих компенсируют специальными дополнениями в общую электрическую схему. Расчеты выполняют с применением представленных формул.
Мощность некоторых электрических приборов
При оснащении современной квартиры часто приходится решать задачи по согласованию нагрузок в отдельных линиях. Необходимо правильно встраивать защитный автомат, чтобы предотвратить аварийные ситуации. Начинают с уточнения параметров проводки. Далее проверяют группы подсоединенной бытовой техники. Типичные параметры потребляемой мощности (Вт):
- персональный компьютер – 170-1 250;
- ноутбук – 40-280;
- ЖКИ телевизор – 120-265;
- утюг – 450-1850;
- кондиционер – 1 200 – 2 500.
Какой автомат подойдет, определяют с учетом всех значимых факторов. Особое внимание уделяют нагрузкам с высокими значениями реактивной составляющей мощности.