Azotirovanie.ru

Инженерные системы и решения
15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема переключателя гирлянд, устройства управления люстрами (К561ИЕ16)

Схема переключателя гирлянд, устройства управления люстрами (К561ИЕ16)

Схема самодельного устройства, которое может переключать ёлочные гирлянды, другую праздничную иллюминацию, какие-то рекламные световыеустройства. А по схеме с изменениями на рисунке 2 может быть электронным переключателем для люстры или светильников подвесного потолка, в количестве четырех ламп или четырех групп ламп.

Принципиальная схема

Цифровая часть схемы состоит из счетчика на микросхеме К561ИЕ16. На вход «С» счетчика поступают полуволны сетевого напряжения через делитель на резисторах R1 и R2.

Они снимаются с выхода мостового выпрямителя на диодах VD1-VD4, который служит для выпрямления сетевого напряжения, потому что лампы Н1-Н4 (или гирлянды, группы ламп) питаются пульсирующим напряжением.

Это пульсирующее напряжение пульсирует с частотой в два раза больше частоты электросети (потому что мост — двухполупериодный выпрямитель). Делитель на резисторах R1 и R2 понижает его амплитуду до необходимого для микросхемы К561ИЕ16 уровня, и далее импульсы частотой 100 Гц поступают на вход «С» счетчика D1.

Принципиальная схема переключателя гирлянд

Рис. 1. Принципиальная схема переключателя гирлянд.

Счетчик делит их частоту, и на его выходах соответственно меняется код. Код с четырех разрядов счетчика подан на ключи на полевых транзисторах VТ1-VТ4.

В стоковых цепях транзисторов и включены лампы (или группы ламп). Они переключаются по алгоритму четырехразрядного двоичного кода (лампы горят где единицы).

При таких диодах в мосте, как показано на схеме, суммарная мощность всех ламп не должна быть больше 200 Вт. Но если мост на VD1-VD4 заменить более мощным, то максимум для транзисторов IRF840 будет 200 Вт на каждый без радиатора, или по 2000 Вт на каждый при использовании радиатора.

Резисторы R4-R7 нужны для гашения импульсов тока зарядки и разрядки емкостей затворов полевых транзисторов. Без этих резисторов импульсы тока зарядки и разрядки затворов будут перегружать выходы микросхемы, и это приведет к сбоям в работе счетчика.

Читайте так же:
Показания счетчика электроэнергии что куда вводить

Питается микросхема от выпрямителя на диодах VD1-VD4, но через параметрический стабилизатор на стабилитроне VD5 и резисторе R3.

Он стабилизирует напряжение питания микросхемы на уровне 13V. А конденсатор С2 сглаживает пульсации питающего напряжения. RC-цепь C1-R8 служит для автоматического сброса счетчика в момент подачи питания на схему.

Переключатель для люстры

На рисунке 2 показаны изменения в схеме для того, чтобы эта схема работала в качестве переключателя для люстры или подвесного потолка. Отличие в том, что есть выключатель S1. Он служит для управления поступлением импульсов на вход «С» счетчика.

Схема переделки переключателя гирлянд для управления люстрой

Рис. 2. Схема переделки переключателя гирлянд для управления люстрой.

Этот выключатель -кнопка, то есть во включенном состоянии он держится только когда его держат нажатым. Когда S1 нажат на счетчик поступают импульсы и его состояние на выходе изменяется.

Соответственно, будет последовательно перебрано 16 вариантов сочетаний включенных и выключенных ламп, от «0000» когда все выключены, до «1111» когда все включены. Как только включено желаемое сочетание ламп S1 нужно отпустить. И счетчик D1 останется в этом состоянии.

В процессе налаживания нужно подобрать сопротивление R2 минимальным, при котором счетчик работает нормально, — уверенно считает и не дает сбоев. Счетчик К561ИЕ16 можно заменить на CD4020, CD4040 или CD4060.

Цифровой частотомер.

Данная статья предназначена для тех, кто не хочет «заморачиваться» с МК.

Каждый радиолюбитель в процессе своей творческой деятельности сталкивается с необходимостью оборудования своей «лаборатории» необходимыми измерительными приборами.
Одним из приборов – это частотомер. У кого есть возможность, тот покупает готовый, а кто-то и собирает свою конструкцию, по своим возможностям.
Сейчас много различных конструкций, выполненных на МК, но встречаются и на цифровых микросхемах (как говорится «гугл в помощь!»).
После «ревизии» в своих закромах обнаружилось, что имеются в наличии цифровые микросхемы серий 155, 555, 1533, 176, 561, 514ИД1(2) (простая логика – ЛА, ЛЕ, ЛН, ТМ, средней сложности – ИЕ, ИР, ИД, еще 80-90 г.г. выпуска, выбрасывать их – «жаба» задавила!) на которых можно собрать не сложный приборчик, из тех компонентов, которые были под рукой в данный момент.
Захотелось просто творчества, поэтому приступил к разработке частотомера.

Читайте так же:
Счетчик электроэнергии двух трех тарифный

Рисунок 1.
Внешний вид частотомера.

Блок-схема частотомера:

highslide.js

Рисунок 2.
Блок-схема частотомера.

Входное устройство-формирователь.

Схему взял из журнала «Радио» 80-х годов (точно не помню, но вроде как частотомер Бирюкова). Ранее повторял её, работой был доволен. В формирователе использована К155ЛА8 (уверенно работает на частотах до 15-20 мГц). При использовании в частотомере микросхем 1533 серии (счётчики, входной формирователь) рабочая частота частотомера составляет 30-40 мГц.

highslide.js

Рисунок 3.
Входной формирователь и ЗГ измерительных интервалов.

Задающий генератор, формирователь измерительных интервалов.

Задающий генератор собран на часовой МС серии К176, изображён на рисунке №3 вместе с входным формирователем.
Включение МС К176ИЕ12 типовое, каких-либо отличий нет. Формируются частоты 32,768 кГц, 128 Гц, 1,024 кГц, 1 Гц. Используется в ЧС только 1 Гц. Для формирования управляющего сигнала для ВУ эта частота делится на 2 (0,5 Гц) МС К561ТМ2 (CD4013A) (используется один D-триггер).

Рисунок 4.
Сигналы интервалов.

Формирователь сигналов сброса счетчиков КР1533ИЕ2 и записи в регистры хранения К555ИР16

Собран на МС К555(155)АГ3 (два ждущих мультивибратора в одном корпусе), можно использовать и две МС К155АГ1 (смотри рис.№3).
По спаду управляющего сигнала МС АГ3 первый ж/м формирует импульс Rom – записи в регистры хранения. По спаду импульса Rom формируется вторым ж/м импульс сброса триггеров счетчиков КР1533ИЕ2 Reset.


Рисунок 5.
Сигнал сброса.

Для гашения незначащих нулей при измерении частоты собран блок на 2-х К555ИР16 и 4-х К555(155)ЛЕ1 (схемку нашел на просторах интернета, только немного подкорректировал под себя и имеющуюся элементарную базу).
Можно упростить частотомер и не собирать схему гашения незначащих нулей (на рисунке №9 изображена схема частотомера без схемы гашения незначащих нулей), в этом случае просто будут светиться все индикаторы, смотрите сами, как Вам лучше.
Я её собрал потому, что мне просто так приятнее смотреть на табло частотомера.

Читайте так же:
Перепад напряжения электронный счетчик

highslide.js

Рисунок 6. Схема гашения незначащих нулей.

Включение счетчиков КР1533ИЕ2, регистров К555ИР16, дешифраторов КР514ИД2 типовое, согласно документации.

highslide.js

Рисунок 7.
Схема включения счётчиков и дешифраторов.

Весь ЧС собран на 5-х платах:
1, 2 – счетчики, регистры и дешифраторы (на каждой плате по 4-е декады);
3 – блок гашения незначащих нулей;
4 – задающий генератор, формирователь измерительных интервалов, формирователь сигналов Rom и Reset;
5 – блок питания.

Размеры плат: 1 и 2 – 70х105, 3 и 4 – 43х100; 5 – 50х110.

highslide.js

Рисунок 8.
Подключение схемы гашения незначащих нулей в частотомере.

Блок питания. Собран на двух МС 7805. Включения типовое, как рекомендует завод-изготовитель. Для принятия решения по блоку питания были проведены замеры тока потребления ЧС, так же проверялось возможность применения ИБП и БП с ШИМ стабилизацией. Проверялись: ИБП собранный на TNY266PN (5В, 2А), БП с ШИМ на основе LM2576T-ADJ (5В, 1,5А). Общее замечания – ЧС работает не корректно, т.к. по цепи питания проходят импульсы с частотой работы драйверов (для TNY266PN около 130 кГц, для LM2576T-ADJ – 50 кГц). Применение фильтров большого изменения не выявили. Так, что остановился на обыкновенном БП – транс, диодный мост, электролиты и две МС 7805. Ток потребления всего ЧС (на индикаторах все «8») около 0,8А, когда индикаторы погашены – 0,4А.

Рисунок 9.
Схема частотомера без схемы гашения незначащих нулей.

В блоке питания использовал две МС 7805 для питания ЧС. Одна МС стабилизатора питает плату входного формирователя, блока управления дешифраторами (гашение незначащих нулей) и одной платы счетчиков-дешифраторов. Вторая МС 7805 – питает другую плату счетчиков-дешифраторов и индикаторы. Можно бп собрать и на одной 7805, но греться будет прилично, встанет проблема с отведением тепла. В ЧС можно применять МС серий 155, 555, 1533. Все зависит от возможностей….

Читайте так же:
Электросчетчик меркурий 206 технические характеристики

highslide.js highslide.js

highslide.js highslide.js
Рисунок 10, 11, 12, 13.
Конструкция частотомера.

Возможная замена: К176ИЕ12 (MM5368) на К176ИЕ18, К176ИЕ5 (CD4033E); КР1533ИЕ2 на К155ИЕ2 (SN7490AN, SN7490AJ), К555ИЕ2 (SN74LS90); К555ИР16 (74LS295N) можно заменить на К155ИР1 (SN7495N, SN7495J) (отличаются одним выводом), или применить для хранения информации К555(155)ТМ5(7) (SN74LS77, SN74LS75); КР514ИД2 (MSD101) дешифратор для индикаторов с ОА, можно применить и КР514ИД1 (MSD047) дешифратор для индикаторов с ОК; К155ЛА8 (SN7403PC) 4 элемента 2И-НЕ с открытым коллектором – на К555ЛА8; К555АГ3 (SN74LS123) на К155АГ3 (SN74123N, SN74123J), или две К155АГ1 (SN74121); К561ТМ2 (CD4013A) на К176ТМ2 (CD4013E). К555ЛЕ1 (SN74LS02).

P.S. Можно использовать различные индикаторы с ОА, только ток потребления на один сегмент не должен превышать нагрузочной способности дешифратора по выходу.. Ограничительные резисторы зависят от типа применяемого индикатора (в моем случае 270 ом).

Ниже в архиве есть все необходимые файлы и материалы для сборки частотомера.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector