Azotirovanie.ru

Инженерные системы и решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Работа и мощность тока

Работа и мощность тока

Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U – разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде

Закон Джоуля-Ленца

Рассмотрим практически важный случай, когда основным действием тока является тепловое действие. В таком случае согласно закону сохранения энергии количество теплоты, выделившееся в проводнике, равно работе тока: Q = A. Поэтому

? 1. Докажите, что количество теплоты Q, выделившееся в проводнике с током, выражается также формулами

Q = I 2 Rt, (2)
Q = (U 2 /R)t. (3)

Подсказка. Воспользуйтесь формулой (1) и законом Ома для участка цепи.

Мы вывели формулы (1) – (3), используя закон сохранения энергии, но исторически соотношение Q = I 2 Rt независимо друг от друга установили на опыте российский ученый Эмилий Христианович Ленц и английский ученый Дж. Джоуль за несколько лет до открытия закона сохранения энергии.
Закон Джоуля – Ленца: количество теплоты, выделившееся за время t в проводнике сопротивлением R, сила тока в котором равна I, выражается формулой

Применение закона Джоуля – Ленца к последовательно и параллельно соединенным проводникам

Выясним, в каких случаях для сравнения количества теплоты, выделившейся в проводниках, удобнее пользоваться формулой (2), а в каких случаях – формулой (3).

Формулу Q = I 2 Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).

Из этой формулы видно, что при последовательном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого больше. При этом

Формулу Q = (U 2 /R)t удобно применять, когда напряжение на концах проводников одинаково, то есть когда они соединены параллельно (рис. 58.2).

Из этой формулы видно, что при параллельном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого меньше. При этом

? 2. При последовательном соединении в первом проводнике выделилось в 3 раза большее количество теплоты, чем во втором. В каком проводнике выделится большее количество теплоты при их параллельном соединении? Во сколько раз большее?

? 3. Имеются два проводника сопротивлением R1 = 1 Ом и R2 = 2 Ом. Их подключают к источнику напряжения 6 В. Какое количество теплоты выделится за 10 с, если:
а) подключить только первый проводник?
б) подключить только второй проводник?
в) подключить оба проводника последовательно?
г) подключить оба проводника параллельно?
д) чему равно отношение значений количества теплоты Q1/Q2, если проводники включены последовательно? Параллельно?

Поставим опыт
Будем включать в сеть две лампы накаливания с разными сопротивлениями нити накала параллельно и последовательно (рис. 58.3, а, б). Мы увидим, что при параллельном соединении ламп ярче светит одна лампа, а при последовательном – другая.

? 4. У какой из ламп (1 или 2) сопротивление больше? Поясните ваш ответ.

? 5. Объясните, почему при последовательном соединении накал нити каждой лампы меньше, чем накал этой же лампы при параллельном соединении.

? 6. Почему при включении лампы в осветительную сеть нить накала раскаляется добела, а последовательно соединенные в нею соединительные провода почти не нагреваются?

2. Мощность тока

Мощностью тока P называют отношение работы тока A к промежутку времени t, в течение которого эта работа совершена:

Единица мощности – ватт (Вт). Мощность тока равна Вт, если совершаемая током за 1 с работа равна 1 Дж. Часто используют производные единицы, например киловатт (кВт).

? 7. Докажите, что мощность тока можно выразить формулами

P = IU, (5)
P = I 2 R, (6)
P = U 2 /R. (7)

Подсказка. Воспользуйтесь формулой (4) и законом Ома для участка цепи.

? 8. Какой из формул (5) – (7) удобнее пользоваться при сравнении мощности тока:
а) в последовательно соединенных проводниках?
б) в параллельно соединенных проводниках?

? 9. Имеются проводники сопротивлением R1 и R2. Объясните, почему при последовательном соединении этих проводников

а при параллельном

? 10. Сопротивление первого резистора 100 Ом, а второго – 400 Ом. В каком резисторе мощность тока будет больше и во сколько раз больше, если включить их в цепь с заданным напряжением:
а) последовательно?
б) параллельно?
в) Чему будет равна мощность тока в каждом резисторе при параллельном соединении, если напряжение в цепи 200 В?
г) Чему при том же напряжении цепи равна суммарная мощность тока в двух резисторах, если они соединены: последовательно? параллельно?

Мощностью электроприбора называют мощность тока в этом приборе. Так, мощность электрочайника – примерно 2 кВт.

Обычно мощность прибора указывают на самом приборе.

Ниже приведены примерные значения мощности некоторых приборов.
Лампа карманного фонарика: около 1 Вт
Лампы осветительные энергосберегающие: 9-20 Вт
Лампы накаливания осветительные: 25-150 Вт
Электронагреватель: 200-1000 Вт
Электрочайник: до 2000 Вт

Все электроприборы в квартире включаются параллельно, поэтому напряжение на них одинакова.

? 11. В сеть напряжением 220 В включен электрочайник мощностью 2 кВт.
а) Чему равно сопротивление нагревательного элемента в рабочем режиме (когда чайник включен)?
б) Чему равна при этом сила тока?

? 12. На цоколе первой лампы написано «40 Вт», а на цоколе второй – «100 Вт». Это – значения мощности ламп в рабочем режиме (при раскаленной нити накала).
а) Чему равно сопротивление нити накала каждой лампы в рабочем режиме, если напряжение в цепи 220 В?
б) Какая из ламп будет светить ярче, если соединить эти лампы последовательно и подключить к той же сети? Будет ли эта лампа светить так же ярко, как и при параллельном подключении?

? 13. В электронагревателе имеются два нагревательных элемента сопротивлением R1 и R2, причем R1 > R2. Используя переключатель, элементы нагревателя можно включать в сеть по отдельности, а также последовательно или параллельно. Напряжение в сети равно U.
а) При каком включении элементов мощность нагревателя будет максимальной? Чему она при этом будет равна?
б) При каком включении элементов мощность нагревателя будет минимальной (но не равной нулю)? Чему она при этом будет равна?
в) Чему равно отношение R1/R2, если максимальная мощность в 4,5 раза больше минимальной?

Дополнительные вопросы и задания

14. На рисунке 58.4 изображена электрическая схема участка цепи, состоящего из четырех одинаковых резисторов. Напряжение на всем участке цепи постоянно. Примите, что зависимостью сопротивления резистора от температуры можно пренебречь.

а) На каком резисторе напряжение самое большое? самое маленькое?
б) В каком резисторе сила тока самая большая? самая маленькая?
в) В каком резисторе выделяется самое большое количество теплоты? самое маленькое количество теплоты?
г) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если резистор 1 замкнуть накоротко (то есть заменить проводником с очень малым сопротивлением)?
д) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если отсоединить провод от резистора 1 (то есть заменить этот резистор проводником с очень большим сопротивлением)?

Читайте так же:
При протекании электрического тока через проводник выделяется количество теплоты

4.4.4. Эффективные напряжение и ток

Силу переменного тока (напряжения) можно охарактеризовать при помощи амплитуды. Однако амплитудное значение тока непросто измерить экспериментально. Силу переменного тока удобно связать с каким-либо действием, производимым током, не зависящим от его направления. Таковым является, например, тепловое действие тока. Поворот стрелки амперметра, измеряющего переменный ток, вызывается удлинением нити, которая нагревается при прохождении по ней тока.

Действующим илиэффективнымзначением переменного тока (напряжения) называется такое значение постоянного тока, при котором на активном сопротивлении выделяется за период такое же количество теплоты, как и при переменном токе.

Свяжем эффективное значение тока с его амплитудным значением. Для этого рассчитаем количество теплоты, выделяемое на активном сопротивлении переменным током за время, равное периоду колебаний. Напомним, что по закону Джоуля-Ленца количество теплоты, выделяющееся на участке цепи cсопротивлениемприпостоянномтокеза время, определяется по формуле. Переменный ток можно считать постоянным только в течение очень малых промежутков времени. Поделим период колебанийна очень большое число малых промежутков времени. Количество теплоты, выделяемое на сопротивленииза время:. Общее количество теплоты, выделяемое за период, найдется суммированием теплот, выделяемых за отдельные малые промежутки времени, или, другими словами, интегрированием:

.

Сила тока в цепи изменяется по синусоидальному закону

,

.

Опуская вычисления, связанные с интегрированием, запишем окончательный результат

.

Если бы по цепи шёл некоторый постоянный ток , то за время, равное, выделилось бы тепло. По определению постоянный ток, оказывающий такое же тепловое действие, что и переменный, будет равен эффективному значению переменного тока. Находим эффективное значение силы тока, приравнивая теплоты, выделяемые за период, в случаях постоянного и переменного токов

(4.28)

Очевидно, точно такое же соотношение связывает эффективное и амплитудное значения напряжения в цепи с синусоидальным переменным током:

(4.29)

Например, стандартное напряжение в сети 220 В – это эффективное напряжение. По формуле (4.29) легко посчитать, что амплитудное значение напряжения в этом случае будет равно 311 В.

4.4.5. Мощность в цепи переменного тока

Пусть на некотором участке цепи с переменным током сдвиг фаз между током и напряжением равен , т.е. сила тока и напряжение изменяются по законам:

,.

Тогда мгновенное значение мощности, выделяемой на участке цепи,

.

Мощность изменяется со временем. Поэтому можно говорить лишь о ее среднем значении. Определим среднюю мощность, выделяемую в течение достаточно длительного промежутка времени (во много раз превосходящего период колебаний):

.

С использованием известной тригонометрической формулы

.

Величину усреднять не нужно, так как она не зависит от времени, следовательно:

.

За длительное время значение косинуса много раз успевает измениться, принимая как отрицательные, так и положительные значения в пределах от (1) до 1. Понятно, что среднее во времени значение косинуса равно нулю

, поэтому(4.30)

Выражая амплитуды тока и напряжения через их эффективные значения по формулам (4.28) и (4.29), получим

. (4.31)

Мощность, выделяемая на участке цепи с переменным током, зависит от эффективных значений тока и напряжения и сдвига фаз между током и напряжением. Например, если участок цепи состоит из одного только активного сопротивления, тои. Если участок цепи содержит только индуктивность или только ёмкость, тои.

Объяснить среднее нулевое значение мощности, выделяемой на индуктивности и ёмкости можно следующим образом. Индуктивность и ёмкость лишь заимствуют энергию у генератора, а затем возвращают её обратно. Конденсатор заряжается, а затем разряжается. Сила тока в катушке увеличивается, затем снова спадает до нуля и т. д. Именно по той причине, что на индуктивном и ёмкостном сопротивлениях средняя расходуемая генератором энергия равна нулю, их назвали реактивными. На активном же сопротивлении средняя мощность отлична от нуля. Другими словами провод с сопротивлением при протекании по нему тока нагревается. И энергия, выделяемая в виде тепла, назад в генератор уже не возвращается.

Если участок цепи содержит несколько элементов, то сдвига фаз может быть иным. Например, в случае участка цепи, изображенного на рис. 4.5, сдвиг фаз между током и напряжением определяется по формуле (4.27).

Пример 4.7.К генератору переменного синусоидального тока подключён резистор с сопротивлением. Во сколько раз изменится средняя мощность, расходуемая генератором, если к резистору подключить катушку с индуктивным сопротивлениема) последовательно, б) параллельно (рис. 4.10)? Активным сопротивлением катушки пренебречь.

Решение.Когда к генератору подключено одно только активное сопротивление, расходуемая мощность

(см. формулу (4.30)).

Рассмотрим цепь на рис. 4.10, а. В примере 4.6 было определено амплитудное значение силы тока генератора: . Из векторной диаграммы на рис. 4.11,а определяем сдвиг фаз между током и напряжением генератора

.

В результате средняя расходуемая генератором мощность

.

Ответ: при последовательном включении в цепь индуктивности средняя мощность, расходуемая генератором, уменьшится в 2 раза.

Рассмотрим цепь на рис. 4.10,б. В примере 4.6 было определено амплитудное значение силы тока генератора . Из векторной диаграммы на рис. 4.11,б определяем сдвиг фаз между током и напряжением генератора

.

Тогда средняя мощность, расходуемая генератором

.

Ответ: при параллельном включении индуктивности средняя мощность, расходуемая генератором, не изменяется.

Закон Кулона, конденсатор, сила тока, закон Ома, закон Джоуля – Ленца

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Читайте так же:
Ток установки теплового реле это

В аналитическом виде закон Кулона имеет вид:

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

То есть $1$ Кл$= 1А·с$.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

Часто его записывают в виде $k=<1>/<4πε_0>$, где $ε_0=8.85×10^<-12>Кл^2$/$H·м^2$ — электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_<0>$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

где $ε$ — диэлектрическая проницаемость среды, $ε_0$ — электрическая постоянная.

Сила тока

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:

Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время.

Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.

Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_<0>nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t=<∆l>/<υ>$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:

В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836).

Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока.

Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.

Закон Ома для участка цепи

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи: силой тока $I$, напряжением $U$ и сопротивлением $R$.

Закон этот был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя. В приведенной формулировке он называется также законом Ома для участка цепи. Математически закон Ома записывается в виде следующей формулы:

Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.

Для любого проводника (твердого, жидкого или газообразного) существует своя ВАХ. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников, заданная законом Ома $I=/$, и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.

Закон Ома — это основа всей электротехники. Из закона Ома $I=/$ следует:

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Читайте так же:
Действие электрического тока примеры тепловых действий тока
Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ/$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^<-1>м^<-1>$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^<-6>$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^<-2>$) Ом$·$м$м^2$/м, диэлектрики — в $10^<15>-10^<20>$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при $0°$С:

Зависимость удельного сопротивления проводников от температуры выражается формулой:

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=(<1>/<273>)K^<-1>$. Для растворов электролитов $α

Закон Джоуля Ленца — самая полная теория

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем, что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии, которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой). Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики. Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

О законе Джоуля Ленца

Рассмотрим произвольный участок цепи постоянного тока, к концам которого приложено напряжение U. За время t через каждое сечение проводника проходит заряд . Это равносильно тому, что заряд q переносится за время t из одного конца проводника в другой.

Интересный материал:Все о законе Ома

При этом силы электростатического поля и сторонние силы, действующие на данном участке, совершают работу . Разделив работу на время t, за которое она совершается, получим мощность, развиваемую током на рассматриваемом участке .

Эта мощность может расходоваться на совершение работы над внешними телами; на протекание химических реакций; на нагревание данного участка цепи и др.

В случае, когда проводник неподвижен и химических превращений в нем не совершается, работа тока затрачивается на увеличение внутренней энергии проводника, в результате чего проводник нагревается. Принято говорить, что при протекании тока в проводнике выделяется тепло

Это соотношение называется законом Джоуля – Ленца. Оно было экспериментально установлено английским физиком Д. П. Джоулем и подтверждено точными опытами Э. Х. Ленца.

Если сила тока изменяется со временем, то количество теплоты, выделяющееся в проводнике за время t, вычисляется по формуле

От формулы (4.1), можно перейти к выражению, характеризующему выделение тепла в различных точках проводника. Выделим в проводнике элементарный объем в виде цилиндра. Согласно закону Джоуля – Ленца, за время dt, в этом объеме выделится количество теплоты

где – dV элементарный объем. Разделив это выражение на dV и dt, найдем количество теплоты, выделяющееся в единице объема в единицу времени:

Величину называют удельной тепловой мощностью тока. Эта формула представляет собой дифференциальную форму закона Джоуля – Ленца.

  • В чем заключается физический смысл удельной тепловой мощности тока 2) Напишите закон Джоуля-Ленца в интегральной и дифференциальной формах

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как $delta Q$. Обратим внимание, что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом. Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

$$delta Q=c m d T=nu c_ d T(2)$$

где $c=frac$ – удельная теплоемкость тела, m – масса тела, $c_=c cdot mu$ — молярная теплоемкость, $mu$ – молярная масса вещества, $nu=frac$ – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты ($Delta Q$), которое получает тело при увеличении его температуры на величину $Delta t = t_2 — t_1$ можно вычислить как:

$$Delta Q=c m Delta t(3)$$

где t2, t1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности ($Delta t$) в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Немного истории

Многочисленные опыты, проведенные в конце XVIII – начале XIX века, позволили не только установить основные свойства и законы электричества, но и сформулировать эпохальный по своей значимости вывод об эквивалентности между теплотой и механической работой: работа, или, как впоследствии стали формулировать, «энергия», никогда не теряется, а лишь переходит из одного вида в другой. Этот вывод, получивший впоследствии название закона сохранения и превращения энергии (см. подраздел 1.2), и заключался в том, что теплоту можно обратить в механическую работу и наоборот и что из определенного количества теплоты можно получить только определенное количество механической работы. Можно привести тысячи примеров, когда с помощью этого закона нашли свое объективное толкование результаты опытов в различных областях естествознания.

Читайте так же:
В бытовых электронагревательных приборах используется тепловое действие электрического тока


Закон Джоуля Ленца кратко

Основными положениями закона сохранения энергии воспользовались и электротехники при определении, например, количества тепловой энергии, выделяющегося в гальванической батарее вследствие химической реакции и превращающегося впоследствии в электрическую энергию. Однако особенность электрической энергии состоит в том, что само по себе электричество неприменимо. Человечество не может использовать его непосредственно подобно тому, как оно согревается теплотой, видит благодаря свету и т.п. Можно пользоваться только действием электрического тока, при котором электричество переходит в другие формы энергии.

Одним из первых глубоко исследовал свойства электрического тока в 1801–1802 годах петербургский академик В.В. Петров (1761– 1834), который провел множество экспериментов по изучению неизвестных в то время законов электрического тока. Изучив работы своих предшественников, Петров пришел к выводу, что более полное и всестороннее исследование электрического тока возможно лишь с помощью крупных гальванических батарей, действие которых будет более интенсивным и легче наблюдаемым. Для своих опытов Петров построил самую крупную в мире в те годы батарею из 4200 медных и цинковых кружков, уложенных в четырех деревянных ящиках, и получил от нее электродвижущую силу около 1700 вольт. Благодаря «лежачей» конструкции тяжелые металлические кружки не выдавливали жидкости, которой пропитывались бумажные кружки, разделяющие цинковые и медные элементы. Для изоляции он покрыл внутренние стенки ящиков сургучным лаком. Общая длина батареи составила 12 м. Все это позволило ему построить «огромную наипаче» батарею, которой не знал ещё мир. Уже в 1801 году он нашел зависимость силы тока от поперечного сечения проводника, в то время как немецкий физик Ом, работавший над этими проблемами, опубликовал результаты своих опытов только в 1827 году. Очень скоро им было замечено, что при прохождении электрического тока по проводнику последний нагревается.

В своих работах В.В. Петров описывает опыты по электролизу растительных масел, в результате которых он обнаружил высокие электроизоляционные свойства этих масел. Позднее масла получили широкое применение в качестве электроизоляционного материала. Желая продемонстрировать явление электролиза одновременно в нескольких трубках с водой, Петров впервые применил параллельное соединение приемников электрического тока. Работы этого выдающегося ученого установили возможность практического использования электрического тока для нагревания проводников.

Эмилий Христианович Ленц (1804–1865) – известный российский физик и электротехник, академик Петербургской академии наук, ректор Петербургского университета – родился в Дерпте (ныне Тарту, Эстония) в семье чиновника. После второго курса Дерптского университета отправился в 1823 году в трехлетнее кругосветное плавание. С помощью сконструированных им приборов (глубометра и батометра) занимался физическими исследованиями в водах Берингова пролива, Тихого и Индийского океанов, установил происхождение теплых и холодных морских течений, открыл закон океанических циркуляций. В 1829 г. принял участие в экспедиции на Кавказ, где проводил магнитные, термометрические и барометрические измерения в горных районах Кавказа и на побережье Каспийского моря. В 1830 году был назначен экстраординарным профессором и директором физического кабинета при Петербургской АН, в 1836 г. возглавил кафедру физики в Петербургском университете, а в 1863 г. стал ректором этого университета. Основные его работы посвящены электромагнетизму, вопросам теории и практического применения электричества, исследования в области которого Ленц начал в 1831 году в лаборатории первого русского электротехника – академика В.В. Петрова. Ленц стоял у истоков первой в России школы физиков-электротехников, последователями которой стали А.С. Попов, Ф.Ф. Петрушевский, В.Ф. Миткевич и др.

Зависимость количества выделяемой теплоты от силы тока изучали английский физик Джеймс Джоуль и русский физик Эмилий Ленц. Они пропускали ток по спирали, помещенной в калориметр с водой. Через некоторое время вода нагревалась. По её температуре легко было вычислить количество выделившейся теплоты. Из проведенных опытов практически одновременно Джоуль и Ленц пришли к выводу, что при прохождении гальванического тока I по проводнику, обладающему определенным сопротивлением R, в течение времени t совершается работа А :

Будет интересно➡ Законы Кирхгофа простыми словами: определение для электрической цепи

проявляющаяся в виде выделившейся теплоты.

Этот важнейший вывод обратимости электрической и тепловой энергии, теоретически обоснованный Уильямом Томсоном, получил название закона Джоуля–Ленца, а именем Джоуля названа единица механической работы в системе СИ.

Комбинируя проводники различного сопротивления, включенные последовательно в общую цепь, можно добиться концентрированного выделения большого количества теплоты на малом участке проводника с большим сопротивлением. На таком концентрировании выделения теплоты были основаны все первоначальные опыты превращения энергии электрического тока в тепловую и даже в световую энергию.


Суть данного закона

Всю свою жизнь В.В. Петров – член двух академий – прожил скромно и незаметно. 41 год он проработал в Медико-хирургической академии. За это время он провел много физических опытов, написал три книги и учебник по физике, которым пользовались в гимназиях всей России. Книги и научные статьи Петров писал на русском языке, чтобы их читало как можно больше людей, хотя в то время научные работы было принято писать на латыни. Он писал: «Я надеюсь, что просвещенные и беспристрастные физики по крайней мере некогда согласятся отдать трудам моим ту справедливость, которую важность сих последних опытов заслуживает».

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты ($delta Q$) равное:

$$delta Q=lambda d m$$

где $lambda$ – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Из курса лекций

При протекании тока через проводник, обладающий сопротивлением, проводник нагревается (если он неподвижен и в нём нет химических превращений, то работа тока расходуется на нагревание проводника). Определим количество теплоты, выделяющегося в единицу времени на участке цепи. Рассмотрим однородный и неоднородный участки цепи, будем использовать закон Ома и закон сохранения энергии.

Читайте так же:
Урок физики тепловое действие электрического тока закон джоуля ленца

Будет интересно➡ Что такое мощность электрического тока и как ее рассчитать

Однородный участок цепи

Рассчитаем работу, которую совершают силы поля над носителями тока на участке 1–2 за время dt. Сила тока в проводнике I, разность потенциалов между точками 1 и 2 – (j1 – j2). Тогда: – такой заряд протечёт через поперечное сечение участка 1-2.

работа, совершаемая при перенесении заряда dq через поперечное сечение проводника на участке 1–2, силами поля.

Согласно закону сохранения энергии, энергия, эквивалентная этой работе, выделяется в виде тепла, если проводник неподвижен и в нём не происходят химические превращения, т.е. проводник нагревается. Носители тока (в металлах электроны) в результате работы сил поля приобретают дополнительную кинетическую энергию, а затем расходуют её на возбуждение колебаний решётки при столкновении с её узлами-атомами. Тогда:

Т.к. , проинтегрировав, получаем:

Эта формула выражает закон Джоуля-Ленца для однородного участка цепи в интегральной форме записи. Если сила тока изменяется со временем, то количество теплоты, выделяющееся за время t вычисляется по формуле:

Получим дифференциальную форму записи закона Джоуля-Ленца.

; ; – величина элементарного объема.

Формула(24.6) определяет тепло, выделяющееся во всём проводнике, можно перейти к выражению, характеризующему выделение тепла в различных местах проводника. Выделим в проводнике элементарный объём в виде цилиндра. Согласно закону Джоуля-Ленца за время dt в этом объеме выделяется тепло.

Разделив это выражение на dV и dt, найдём количество тепла, выделяющееся в единице объема в единицу времени, эту величину назвали удельной тепловой мощностью тока w.

Удельная тепловая мощность тока – это количество теплоты выделяющееся в единицу времени в единице объема проводящей среды.

Формула (24.9) – дифференциальная форма записи закона Джоуля-Ленца. Сформулируем его:

Удельная тепловая мощность тока пропорциональна квадрату плотности электрического тока и удельному сопротивлению среды в данной точке.

Уравнение применимо к любым проводникам вне зависимости от их формы, однородности и от природы сил, возбуждающих электрический ток. Если на носители тока действуют только электрические силы, то, согласно закону Ома:

Теплота и энергия в электрической цепи

Процесс преобразования электрической энергии в тепловую играет большую роль в практическом применении, что широко используется в разных нагревательных приборах в промышленной и бытовой сфере.

В то же время, тепловые потери нежелательны по причине того, что могут сопровождаться непроизводительными расходами энергии. Это может касаться, например, электрических машин, трансформаторов и прочих устройств, что существенно снижает их КПД.

Закон Джоуля-Ленца

Первым сформулировал зависимость выделения теплоты от силы электрического тока Джеймс Джоуль, что произошло в 1841 году. Позднее это сделал Эмиль Ленц. Так появляется закон Джоуля-Ленца, позволяющий рассчитывать мощность электронагревателей наряду с потерями на тепловыделение в линиях электропередач.

В словесной формулировке, согласно исследованиям этих ученых, закон будет звучать таким образом: количество выделяемой в определенном объеме проводника теплоты в момент протекания электрического тока оказывается прямо пропорциональным произведению величины напряженности электрического поля и плотности электрического тока. Формула записывается так:

  • $w$ представляет мощность выделяемого тепла в единице объема;
  • $vec$ считается плотностью электрического тока;
  • $vec$ — напряженность электрического поля;
  • $Q$ -проводимость среды.

Принимая во внимание неизменность со временем силы тока и сопротивления проводника, можно записывать закон Джоуля-Ленца более упрощенно:

Применяя закон Ома в совокупности с алгебраическими преобразованиями, получаем следующие эквивалентные формулы:

Исследования физиков Джоуля и Ленца относительно тепловыделения от действия электрического тока значительно продвинули научное понимание определенных физических процессов, а выведенные при этом основные формулы, не претерпев изменений, продолжают активно использоваться в различных научно-технических отраслях.

Готовые работы на аналогичную тему

В сфере электротехники выделяют несколько технических задач, где количество теплоты, которая будет выделяться при протекании тока, имеет критически важное значение при расчете таких параметров, как:

  • теплопотери в ЛЭП;
  • характеристики для проводов сетей электропроводки;
  • тепловая мощность электронагревателей;
  • температура срабатывания автовыключателей;
  • температура плавления плавких предохранителей;
  • тепловыделение разных электротехнических аппаратов, а также элементов радиотехники.

Тепловое действие электротока в проводах ЛЭП является нежелательным из-за весомых потерь электроэнергии на тепловое выделение. Согласно различным данным, в ЛЭП теряется до 40% всей производимой в мировом формате электрической энергии. С целью сокращения потерь в процессе передачи электроэнергии на большие расстояния, напряжение в ЛЭП поднимают (с произведением расчетов на основании производных формул закона Джоуля-Ленца).

Расчеты потерь электроэнергии в линии электропередач

Как пример, гипотетически берется участок ЛЭП от электростанции до трансформаторной подстанции. По причине того, что провода ЛЭП и потребитель электрической энергии (трансформаторная подстанция) соединены последовательным образом, через них будет течь один и тот же ток $I$. Тогда, на основании закона Джоуля – Ленца, количество теплоты $Q_w$, которая выделится на проводах, рассчитывают, согласно формуле:

Производимая электротоком мощность $Q_c$ в нагрузке определяется на основании закона Ома:

При условии равенства токов, таким образом, в первую формулу вместо $I$ вставляется выражение $frac$:

При условии игнорирования зависимости сопротивления проводников от изменения температуры, $R_w$ можно считать неизменной величиной (константой). При стабильном энергопотреблении потребителя (трансформаторной подстанции), таким образом, выделение тепловой энергии в проводах ЛЭП будет считаться обратно пропорциональным квадрату напряжения в конечной точке линии. Иными словами, чем больше окажется напряжение электропередачи, тем меньшими станут потери электроэнергии.

Энергия в электроцепи

В источнике электроэнергии, равно как и в нагрузке (в резисторах), мы наблюдаем необратимое преобразование электрической энергии в тепловую

Совершаемая источником электроэнергии за время t работа (направленная на разделение зарядов сторонними силами в источнике) будет определяться формулой:

В приемнике электроэнергии при напряжении $U$ и токе $I$ расходуется энергия по формуле:

$W_ <пр>= UQ = UIt = I^2Rt = frac$

Мощность $P$ характеризуется интенсивностью преобразования энергии из одного вида в иную за единицу времени. Мощность источника для цепей постоянного тока будет такой:

Мощность приемника тогда определяется по формуле:

$P = frac= U+I = R + I^2 = frac$

В системе СИ энергия и мощность измеряются в Джоулях (Дж) и Ваттах (Вт) соответственно. Для всех приведенных выше величин применяются кратные и дольные единицы измерения. Энергию часто выражают в киловатт-часах.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector