Azotirovanie.ru

Инженерные системы и решения
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электросчетчики: общие сведения и класс точности электрических счетчиков

Электросчетчики: общие сведения и класс точности электрических счетчиков

Электроэнергии необходим в учет. Данная задача возлагается на электросчетчики. Измеряется электрическая энергия в киловатт-часах – это обозначает, что электрический прибор, который имеет потребляемую мощность 1000Вт, обязан проработать один час, чтобы затратить 1 кВт/ч.

Сегодняшнее, перенасыщение различной электронной (и не только) продукцией, разнообразие различных моделей и видов электронных счетчиков сможет ввести в ступор обычного потребителя.

Счетчики на отечественном рынке есть разные – электронные (цифровые), простые механические, комбинированные, просто «навернутые» и межпланетные очень точные.

Функциональность сегодняшних счетчиков тоже впечатляет – кроме простого измерения мощности электроэнергии, счетчики могут считать тарифы за энергию и характеристики окружающей среды, следить за качеством энергии, и позволяют возможность удаленного доступа.

В этой статье, состоящей из нескольких частей, мы попытаемся ответить на ряд вопросов, которые появляются при выборе, подсоединении и принципе работы электрического счетчика.

Так как, мы не планируем очень глубоко рассматривать данную тему, некоторые вопросы могут быть не тронутым. Потому нелишним будет прочитать в ПУЭ7, Глава 1.5 — «Учет электрической энергии».

Для обзора темы нам предварительно необходимо каким-то образом разделить все электросчетчики на группы по их разным характеристикам. Иными словами, нужно разобраться с классификацией электрических счетчиков.

Главные характеристики

Разделим по разным показателям.

По способу работы (конструктивному выполнению):

  • Электрические.
  • Индукционные.

По электросети:

  • Трехфазные.
  • Однофазные.

При этом трехфазные электросчетчики делятся:

  • По виду интерфейса связи (для электрических счетчиков).
  • По типу измеряемой мощности — электросчетчики активной и реактивной мощности.
  • По типу подсоединения в сеть — трансформаторного или прямого включения.
  • По классу точности.
  • По размеру тарифов — одно- и многотарифные.

Отличия по виду сети электроэнергии

Главное отличие электросчетчиков состоит в третьем пункте, а точнее, для какой электрической сети они предназначены – для одно- либо трехфазной сети.

Электрические счетчики однофазные применяются в однофазных двухпроводных сетях с напряжением 0,40/0,23 кВт. Главное их использование – учет расхода электрической энергии в квартирах или индивидуальных домах.

Производятся электросчетчики на напряжение 220 (либо 127) Вт, номинальным током — 5-60 Ампер. Ставятся на входе или устанавливаются в межэтажных (квартирных) щитах.

Электрические счетчики трехфазные используются для трехфазных трех- либо четырех проводных сетей.

И если с однофазными все просто и ясно, то трехфазные устройства требуют подробного описания, так как они применяются в электронных установках, которые работают на трехфазном токе.

Трехфазные электросчетчики прямого подключения соединяются к сети напрямую, без вспомогательных устройств – трансформаторов тока.

Номинальный ток производимых электросчетчиков прямого подключения — 5-100 Ампер.

Учет потребленной электроэнергии определяется с помощью вычитания изначального показания электрического счетчика (Пн.) из конечного показания (Пк.):

Но бывают случаи, когда электрическая установка потребляет очень большой ток и электросчетчик прямого подключения этот ток через себя пропускать не в состоянии. Потому в этих случаях применяют подсоединение электрических счетчиков с помощью измерительных трансформаторов тока (ТТ.).

Читайте так же:
Электросчетчики с кнопкой дстп

Главное предназначение ТТ. – снизить ток до таких показателей, при которых устройство будет нормально работать.

Расчет потребленной электроэнергии тут определяется тоже вычитанием изначальных показаний из конечных и в дополнение – умножением получившейся разницы данных на коэффициент трансформации (Кт.) тока трансформатора:

Э=(Пк. — Пн.) х Кт

Узнать коэффициент трансформации у ТТ., можно по информации на шильдике непосредственно трансформатора.

К примеру, надпись 200/10 на ТТ обозначает, что изначальная обмотка этого трансформатора рассчитана на ток 200 А, а вторичная на 10 А.

Из такого соотношения мы и имеем коэффициент трансформации, который равняется 20. Иными словами — ТТ снижает первичный электроток в 20 раз.

Конструктивная особенность электросчетчиков

По конструкции, или если говорить иначе, по типу измерительной системы электросчетчики делятся на индукционные и электрические. То есть, устройство электрического счетчика может быть как довольно простым, так и довольно сложным – в случае с электрическим счетчиком.

Индукционный счетчик — способ его работы базируется на действии магнитного поля катушек, по проводке которых проходит ток, на вращающуюся часть – диск.

Вращение диска мы и видим в пластиковом окошке электросчетчика. Причем число оборотов диска пропорционально затраченной энергии. Эти электросчетчики отличаются небольшой ценой, а также довольно высокой надежностью и качеством.

Среди недостатков можно выделить:

  • Низкая функциональность.
  • Невысокий класс точности (большая погрешность).
  • Плохая (практически никакая) защита от воровства электричества.

Электронный счетчик – современный прибор учета

Невзирая на большую (в отличие от механических электросчетчиков) цену эти счетчики имеют отличные технические характеристики и хорошие сервисные опции.

Отличительные признаки:

  • Долговечность, нет вращающихся деталей.
  • Повышенный класс точности электросчетчиков.
  • Возможность установки много тарифной системы учета.
  • Повышенный интервал между проверками.
  • Есть внутренняя память для сохранения информации по потребленной энергии.
  • Возможность автоматизированной учетной системы потребляемой электроэнергии (АСКУЭ).

Работает электросчетчик с помощью перехода активной мощности в последовательность импульсов, подсчитывающиеся установленным микроконтроллером. Причем количество импульсов пропорционально затраченной (измеряемой) энергии.

Класс точности электрического счетчика

Это его погрешность выполненных замеров. Если сказать верней – самая большая возможная относительная погрешность, которая указывается в процентах.

Сегодня повсеместно идет замена устаревших электросчетчиков на более современные устройства. Для начала это объясняется именно плохим классом точности старых электрических счетчиков, и с увеличенными нагрузками на электроэнергию. Поэтому все электросчетчики с классом точности 2,5 обязаны быть заменены на электросчетчики с классом точности 2 (или 1). Все такие меры указаны Постановлением РФ №442.

О поверке электросчетчиков

Электросчетчики, как и большинство измерительных устройств, нуждаются в постоянной поверке. Верней сказать – подлежат непременной поверке, так как относятся к области государственного регулирования создания единых измерений.

Главная задача этой процедуры – подтверждение правильности замеров и возможности последующей эксплуатации устройства по назначению. Поверка делается в аккредитованной государством организации в определенный срок.

Есть такой показатель электрического счетчика, как интервал между проверками – это интервал времени, после завершения, которого нужно очередная поверка электросчетчика. Теоретически — чем выше интервал, тем лучше качество устройства.

Читайте так же:
Электросчетчик однофазный со 2м2

Изначальная (первичная) поверка делается на заводе-производителе и пишется в паспорте устройства счетчика – с этого времени начинается отсчет интервала.

В чем разница между классами точности 0.5 и 0.5 s

klaa999

Трансформатор тока является важным связующим звеном в сложной цепи информационно-измерительных систем. При этом особую актуальность имеет точность показаний подобного оборудования, ведь при низкой величине подобное оборудование утратит свою пригодность. Все требования к основным классам точности для данных измерительных приборов прописана в действующем стандарте. Сам термин класс точности не является метрологическим термином, он был изобретен создателями приборов, а позже принят метрологами.
Трансформатор тока
Существуют различные классы точности измерения этих трансформаторов, исходя из которых можно подобрать наиболее точный прибор. Каждый подобный прибор дает определенную долю погрешности, не все потраченные кВт учитываются, в результате чего компании энергосбыта несут определенные убытки ежегодно. Погрешность в учете малого ока всегда имеет отрицательное значение, это важно знать при проведении необходимых расчетов. Наиболее распространенные классы точности на сегодня — это 0,5 и 0,5 S. В чем же разница в этих 2-х довольно схожих величинах? В этом необходим разобраться.
Трансформатор

Основные различия двух измерительных величин

Эти 2 класса точности отличаются друг от друга по следующим параметрам:

  • Регулярное применение измерительного прибора класса 0,5 приводит к гораздо большему объему недоучетной потребленной электроэнергии, чем при 0,5 S.
  • Разница в погрешностях прибора с точностью 0,5 составляет на 0,75% больше его аналога 0,5S.
  • Многие приборы с погрешностью 0,5 не выдерживают очередные поверки точности, бракуются проверяющим надзором.
  • Величина погрешности меньше у того трансформатора, который обладает меньшим сопротивлением магнитопровода, это есть у прибора класса 0,5S.
  • Потребители, установившие в своих домах измерительные приборы класса 0,5, наносят колоссальный урон по энергетике, млн. кВт ежедневно просто так уходят в воздух из-за недоучета трансформаторов, у 0,5S эта величина намного ниже.
  • Основная разница этих 2-х величин заключается в том, что основная погрешность в обмотке класс 0,5 не действует ниже 5% от номинального тока. Именно на позициях этого напряжения и происходит основной недоучет потребляемой электроэнергии, который в разы снижается при использовании прибором класса 0,5S.
  • В плане точности стоит отдать предпочтение прибору класса 0,5S, уж он точно выдержит периодические поверки на соответствие.

Многие специалисты предполагают, что в скором времени новые трансформаторы измерительного класса 0,5S вытеснят традиционный 0,5.

Старые трансформаторы — отжившие свое приборы

На многих промышленных учетных узлах и по сей можно встретить измерительные приборы с высоким порогом погрешности формата ТВК-10, ТПЛ-10 и т. д. Разработка их конструкции велась еще в далекий советский период, когда отсутствовало понятие коммерческого учета. Тонкие магнитопроводы этих приборов изготавливались методом шихтовки, из-за этого добиться класс точности выше, чем традиционный 0,5, никак не удавалось. Помимо этого, в подобных приборах не было предусмотрено защиты механизма прочным корпусом, за счет чего их качество со временем существенно снизилось.

Читайте так же:
Как устоновить электро счетчик

Сегодня подобные пережитки прошлого едва ли включены в класс точности 1. Но показатели точности — не единственный параметр, которым эти приборы не соответствуют. Здесь полностью отсутствует возможность установки пломбы, они не способны выстоять серьезные нагрузки, они уже практически выработали весь свой прошлый ресурс надежности. Все эти явные недостатки вынуждают эксплуатационные службы подыскивать достойную замену отжившим свой срок трансформаторам. К счастью, возможность произвести замену на сегодня не имеют никаких ограничений.

Подобные приборы повышенной точности пользуются хорошим спросом для установки в бытовых целях, они прекрасно справляются с коммерческим учетом потребленной энергии. Помимо обеспечения должного класса точности, подобные аморфные сплавы способны повышать степень номинальной нагрузки обмоток, создать улучшенную защиту механизма прибора. На выходе получаются достаточно качественные изделия, способные более точно производить расчет потребляемой энергии.

Системы измерительных приборов. Классы точности.

14.1.1. Электроизмерительные приборы — это такие технические средства, которые вырабатывают сигналы измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

. По роду измеряемой величины электроизмерительные приборы разделяются на следующие виды:

вольтметры (обозначаются буквой V);

амперметры (A);

ваттметры (W);

14.1.3. По физическому принципу действия различают такие сис­темы электроизмерительных приборов:

а) магнитоэлектрическая; б) электромагнитная; в) электродинамическая; г)индукционная; и др.

14.1.4. По классу точности электроизмерительные приборы клас­сифицируются соответственно стандартам. Класс точности обознача­ется цифрой, которая равна приведенной погрешности (в процентах), допускаемой прибором. Выпускают приборы таких классов точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. В счетчиках электроэнергии классы точности следующие: 0,5; 1,0; 2,0; 2,5.

14.1.8. У большинства показывающих электроизмерительных при­боров подвижная часть устройства перемещается вследствие действия вращающего момента. Вращающий момент возникает в результате взаимодействия магнитных или электрических полей и до некоторой степени пропорционален измеряемой величине. В измерительном уст­ройстве всегда есть противодействующий момент, который создается механической или электромагнитной силой.

14.2.1. В приборах магнитоэлектрической системы вращающий момент создается в результате взаимодействия постоянного магнита с проводником с током. Подвижной частью может быть рамка с током или постоянный магнит, расположенный на оси.

Магнитоэлектрические приборы применяют для измерения постоянных токов и напряжений. Они могут также использоваться для измерения сопротивлений как гальванометры.

Недостатком приборов этой системы можно считать непригод­ность к работе в цепях переменного тока, чувствительность к пере­грузкам и зависимость от окружающей температуры.

14.2.2. Электроизмерительный прибор электромагнитной системы имеет неподвижную катушку и расположенную на оси ферромаг­нитную пластинку. Если в катушке протекает измеряемый ток, то со­зданное катушкой поле втягивает вглубь ферромагнитный лепесток.

Направление откло­нения стрелки не зависит от направления тока, т. е. приборами электромагнитной системы можно измерять как в цепях постоянного, так и в цепях переменного тока.

14.2..3. Приборы электродинамической системы имеют измери­тельный механизм, состоящий из двух катушек: неподвижной и под­вижной. Неподвижная катушка имеет две секции, внутри которых на оси расположена подвижная катушка. При наличии тока в катушках воз­никают электромагнитные силы взаимодействия, стремящиеся повер­нуть подвижную катушку, т. е. вращающий момент пропорционален (для постоянных токов и соответствующей конструкции механизма) произ­ведению токов:

Читайте так же:
Электросчетчик с защитой от помех

Класс точностиизмерительных приборов – это хар-ка определяемая пределами допустимых основной(измеряем согласно условиям паспорта) и дополнительной(условия отклоняются от паспортных) погрешности. Класс точности K = , — абсолютная погрешность, — нормированное значение или верхний предел измерений.

Требования к классу точности трансформаторов тока для коммерческого учета

Трансформаторы тока

Измерительный

В информационно-измерительных цепях понижающие средства играют первую роль. Схема включает в себя приемо-передающие приборы с измерительными устройствами, счетчиками электроэнергии и специализированным программным обеспечением. Однако при высокой погрешности преобразования точность измерительных приборов не имеет смысла. Поэтому классы точности трансформаторов тока с развитием высокоточного оборудования приобретают особую значимость.

Они представляет собой важную характеристику, которая показывает соответствие погрешности измерений номинальным значениям. На нее влияет множество параметров.

Общий принцип работы

Через силовую катушку с некоторым количеством витков проходит ток с преодоление сопротивления в ней. Вокруг нее образуется магнитный поток, который изменяется во времени. Его колебания передаются на перпендикулярный магнитопровод. Такое расположение позволяет снизить потери в процессе преобразований энергий.

За счет колебания магнитного поля во вторичных обмотках генерируется электродвижущая сила. Преодолевая сопротивление, пониженный ток течет по цепи измерительных приборов. Напряжение пропорционально входной нагрузке и зависит от количества витков в первичной катушке. В электромеханике такое соотношение называют коэффициентом трансформации.

Класс точности представляет собой отклонение реальной величины от номинального значения.

Для чего используются

Разнообразные виды измерительных трансформаторов встречаются как в небольших приборах размером со спичечный коробок, так и в крупных энергетических установках. Их основное назначение – понижать первичные токи и напряжения до значений, необходимых для измерительных устройств, защитных реле и автоматики. Применение понижающих катушек обеспечивает защиту цепи низшего и высшего ранга, поскольку они разделены между собой.

Понижающие средства разделяют по признакам эксплуатации и предназначены для:

  • измерений. Они передают вторичный ток на приборы;
  • защиты токовых цепей;
  • применения в лабораториях. Такие понижающие средства имеют высокую классность точности;
  • повторного конвертирования, они относятся к промежуточным инструментам.

Понижающие средства делят по типу установки: наружные, внутренние, переносные и накладные, а также по типу материалов изоляции, коэффициенту трансформации.

Измерение

Измерительный трансформатор необходим для понижения высокого тока основного напряжения и передачу его на измерительные устройства. Для подключения стандартных приборов к высоковольтной сети потребовались бы громоздкие установки. Реализовывать инструменты таких размеров экономически не выгодно и не целесообразно.

Использование понижающих трансформаторов позволяет применять обычные устройства измерения в обычном режиме, что расширяет спектр их применения. Благодаря снижению напряжения, они не требуют дополнительных модификаций. Трансформатор отделяет высоковольтное напряжение сети от питающего напряжения приборов, обеспечивая безопасность из использования. От их классности зависит точность учета электрической энергии.

Защита

Кроме питания измерительных приборов понижающие трансформаторы подают напряжение на системы защиты и автоматической блокировки. Поскольку в сетевой электросети происходят перепады и скачки напряжения, которое губительно для высокоточного оборудования цепи.

Читайте так же:
От двух разных электросчетчиков

В энергетических установках оборудование делится на силовое и вторичное, которое контролирует процессы первичной схемы подключения устройств. Высоковольтная аппаратура располагается на открытых площадках или устройствах. Вторичное оборудование находится на релейных планках внутри распределительных шкафов.

Промежуточным элементом передачи информации между силовыми агрегатами и средствами измерения, управления, контроля и защиты являются понижающие или измерительные трансформаторы. Они разделяют первичную и вторичную цепь от пагубного воздействия силовых агрегатов на чувствительные измерительные приборы, а также защищают обслуживающий персонал от повреждений.

Как рассчитать погрешность

Погрешность измерительных трансформаторов определена их конструктивной особенностью. На точность влияет геометрические размеры и формы магнитопроводов, число витков и диаметр провода обмоток. Также большое влияние также оказывает материал, из которого изготовлен магнитопровод.

Такие характеристики электромагнитных материалов при невысоких токах первой обмотки имеют погрешность 1- 5%, поэтому их точность очень низкая. Конструкторы стремятся добиться классности в этом масштабе. Вместо конструкторских сталей применяют аморфные материалы.

Для вычисления класса точности используют следующие формулы:

  • погрешность по величине тока: (delta)I = I2 – I1, где I2 – ток во вторичной обмотке, I2 – ток силовой цепи;
  • погрешность по углу сдвига: (alpha) = (alpha)2 – (alpha)1, где (alpha)2 = 180 градусам, (alpha)1 – фактический угол сдвига.

Погрешности углу и величине тока объясняют воздействие напряжения намагничивания.

Каким требованиям должны соответствовать для коммерческого учета электроэнергии

Современные технологии позволяют изготавливать трансформаторы от 6 до 10 кВ с числом катушек до четырех штук. Каждая катушка имеет свой класс точности. Он подбирается исходя из области применения. Каждая предусматривает свой комплекс тестирования.

Для коммерческих приборов учета используют катушки с классностью 0,2S и 0,5S. Они обладают высокой проницаемостью магнитного поля. Литера «S» указывает на тестирование трансформатора в пяти точках в диапазоне от 1-120% от расчетного напряжения.

Схема проверок выглядит как 1х5х20х100х120. Для классов 1; 0,5 и 0,2 тестирование выполняют по четырем точкам 5х20х100х120%.Для релейной и автоматической защиты используют три точки 50х100х120. Такие трансформатор имеют классность с литерой «З». Требования к классу точности представлены в ГОСТ 7746—2001.

Таблица допустимых погрешностей для коммерческого учета

Для коммерческих приборов учета существует таблица погрешностей.

КлассНапряжение первичной обмотки в процентах от расчетного значенияПредел погрешности по току в процентахПредел погрешности по углу
0,250,7530
200,3515
100-1200,210
0,551,590
200,7545
100-1200,530

Требования, предъявляемые к классу точности преобразователей, представляют собой диапазоны, в которые погрешности должны укладываться. С увеличением точности уменьшается разброс значений.

Разница между преобразователями с маркировкой «S» и без нее, например, 0,5 и 0,5S заключается в том, что первые не нормируют ниже 5% от расчетного тока.

Преимущества использования высокоточных трансформаторов

Измерительные трансформаторы с высоким классом точности имеют ряд преимуществ:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector