Разработка урока: Нагревание проводников электрическим током. Закон Джоуля-Ленца. Лампа -конспект урока по физике (8 класс) на тему
Разработка урока: Нагревание проводников электрическим током. Закон Джоуля-Ленца. Лампа накаливания.
план-конспект урока по физике (8 класс) на тему
Урок физики в 8 классе с использованием электронных образовательных ресурсов.
Скачать:
Вложение | Размер |
---|---|
Урок физики с использованием ЭОР. | 44.06 КБ |
Предварительный просмотр:
Разработка урока: Нагревание проводником электрическим током.
— обобщить знания по вопросу выделения тепла при прохождении тока по проводнику на уровне понимания;
— оценить свои умения применять знания о законе Джоуля — Ленца; познакомиться с конструкцией лампы накаливания;
— научиться применять закон Джоуля — Ленца к объяснению и анализу явлений окружающего мира;
— применять знания и умения, полученные на уроке к решению физических задач; усвоить характерные особенности закона Джоуля — Ленца
Выявить уровень усвоения формулы закона Джоуля — Ленца и его понимания. Дать знания о величинах, характеризующих количество теплоты, выделяемой проводником при прохождении по нему электрического тока.
Дать представление о механизме выделения тепла в проводнике на основе модели строения вещества. Обосновать связь между материалом спирали электрической лампочки и количеством выделившейся теплоты. Познакомить учащихся с методами измерения количества выделившейся теплоты.
Сформировать умения применять основные положения теории строения вещества к обоснованию электрических свойств данного вещества.
Показать значение работ А. Н. Лодыгина в области конструирования ламп накаливания. Подчеркнуть взаимосвязь строения вещества с количеством выделившейся теплоты при прохождении тока по проводнику как проявления одного из признаков метода диалектического познания явлений.
Проверить уровень самостоятельности мышления школьника в применении знаний в различных ситуациях.
Сформировать элементы творческого поиска на основе приемов обобщения. Формировать умения развертывать доказательство на основе данных.
Первые 10-15 минут урока целесообразно посвятить проверке усвоения материала по теме «Работа и мощность электрического тока». http://fcior.edu.ru/card/7175/zakon-oma-dlya-uchastka-cepi-rabota-i-moshnost-elektricheskogo-toka.html С этой целью можно провести тестирование или письменную проверочную работу по индивидуальным карточкам. Для карточек можно предложить следующие варианты разноуровневых заданий:
1. Напряжение на концах электрической цепи 1 В. Какую работу совершит в ней электрический ток в течение 1 с при силе тока 1 А?
2. Одна электрическая лампа включена в сеть напряжением 127 В, а другая — в сеть напряжением 220 В. В какой лампе при прохождении 1 Кл совершается большая работа?
1. По проводнику, к концам которого приложено напряжение 5 В, прошло 100 Кл электричества. Определите работу тока.
2. Электрическая лампочка включена в цепь с напряжением 10 В. Током была совершена работа 150 Дж. Какое количество электричества прошло через нить накала лампочки?
1. Какую работу совершит ток силой 3 А за 10 мин при напряжении в цепи 15 В?
2. К источнику тока напряжением 120 В поочередно присоединяли на одно и то же время проводники сопротивлением 20 Ом и 40 Ом. В каком случае работа электрического тока была меньше и во сколько раз?
1. Башенный кран равномерно поднимает груз массой 0,5 т на высоту 30 м за 2 мин. Сила тока в электродвигателе равна 16,5 А при напряжении 220 В. Определите КПД электродвигателя крана.
2. Транспортер поднимает за время 1 мин груз массой 300 кг на высоту 8 м. КПД транспортера 60%. Определите силу тока через электродвигатель транспортера, если напряжение в сети 380 В.
Изложение нового материала.
При введении понятия работы электрического тока мы уже пользовались, тепловым действием тока (нагревание проводников). Собираем электрическую цепь, в которую последовательно включаем лампу накаливания и реостат. Для измерения силы тока и напряжения на лампе применяем амперметр и вольтметр, учащимся уже известно, что в проводнике при протекании тока происходит превращение электрической энергии во внутреннюю, и проводник нагревается.
— Почему при прохождении электрического тока проводник нагревается?
Они неоднократно наблюдали тепловое действие тока в бытовых приборах. На опыте с лампой накаливания учащиеся убедились, что накал лампы возрастал при увеличении тока. Но нагревание проводников зависит не только от силы тока, но и от сопротивления проводников.
Показывающий тепловое действие тока в цепочке состоящей из двух последовательно соединенных проводников разного сопротивления:. Ток во всех последовательно соединенных проводниках одинаков. Количество же выделяющейся теплоты в проводниках разное. Из опыта делается вывод:
Нагревание проводников зависит от их сопротивления. Чем больше сопротивление проводника, тем больше он нагревается.
— Из какого материала необходимо изготовлять спирали для лампочек накаливания?
— Какими свойствами должен обладать металл, из которого изготовляют спирали нагревательных элементов?
2. Закон Джоуля-Ленца . Учащиеся знают уже формулу для работы A = Ult. Кроме того, им известно, что в неподвижных проводниках вся работа тока идет лишь на нагревание проводников, т. е. на то, чтобы увеличь их внутреннюю энергию. Следовательно, количество теплоты
Из закона Ома для участка цепи U = IR. Если это учесть, то Q = I2Rt.
Количество теплоты, выделяемое проводником с током, равно проиведению квадрата силы тока, сопротивления проводника и времени.
Необходимо заметить, что формулы Q — l2Rt, Q = Ult и Q=U2t/R, вообще говоря, не идентичны. Дело в том, что первая формула всегда определяет превращение электрической энергии во внутреннюю, т. е. количество теплоты. По другим формулам в общем случае определяют расход электрической энергии, идущей как на нагревание, так и на совершение механической работы, Для неподвижных проводников эти формулы совпадают.
Устройство лампы накаливания:
На рисунке изображена газонаполненная лампа накаливания. Концы спирали 1 приварены к двум проволокам, которые проходят сквозь стержень из стекла 2 и припаяны к металлическим частям цоколя 3 лампы: одна проволока — к винтовой нарезке, а другая — к изолированному от нарезки основанию цоколя 4. Для включения лампы в сеть ее ввинчивают в патрон. Внутренняя часть патрона содержит пружинящий контакт 5, касающийся основания цоколя лампы, и винтовую нарезку 6, удерживающую лампу. Пружинящий контакт и винтовая нарезка патрона имеют зажимы, к которым прикрепляют провода от сети.
Тепловое действие тока используют в различных электронагревательных приборах и установках. В домашних условиях широко применяют электрические плитки, утюги, чайники, кипятильники. В промышленности тепловое действие тока используют для выплавки специальных сортов стали и многих других металлов, для электросварки. В сельском хозяйстве с помощью электрического тока обогревают теплицы, кормозапарники, инкубаторы, сушат зерно, приготовляют силос.
Основная часть всякого нагревательного электрического прибора — нагревательный элемент. Нагревательный элемент представляет собой проводник с большим удельным сопротивлением, способный, кроме того, выдерживать, не разрушаясь, нагревание до высокой температуры (до 1000—1200 °С). Чаще всего для изготовления нагревательного элемента применяют сплав никеля, железа, хрома и марганца, известный под названием «нихром». Удельное сопротивление нихрома р = 1,1Ом-мм2/м что примерно в 70 раз больше удельного сопротивления меди. Большое удельное сопротивление нихрома дает возможность изготовлять из него весьма удобные — малые по размерам — нагревательные элементы.
В конце урока можно коллективно обсудить решения нескольких задач:
— Две проволоки одинаковой длины и сечения — железная и медная -соединены параллельно. В какой из них выделится большее количество теплоты?
— Спираль электрической плитки укоротили. Как изменится количество выделяемой в ней теплоты, если плитку включить в то же напряжение?
— Какое количество теплоты выделится в течение часа в проводнике сопротивлением 10 Ом при силе тока 2 А?
— Определите количество теплоты, которое дает электроприбор мощностью 2 кВт за 10 мин работы?
— В чем проявляется тепловое действие тока? При каких условиях оно наблюдается?
— Почему при прохождении тока проводник нагревается?
— Почему, когда по проводнику пропускают электрический ток, проводник удлиняется?
Домашнее задание : § 53, 54 вопросы к параграфам
Желающие учащиеся могут подготовить к следующему уроку доклады учащихся по темам:
«Первое электрическое освещение свечами И» Н. Яблочкова».
«Использование теплового действия тока в промышленности и сельском хозяйстве».
По теме: методические разработки, презентации и конспекты
Конспект урока физики в 8 классе по теме «Нагревание проводников электрическим током. Закон Джоуля — Ленца»
Предлагаю конспект урока по развитию информационной и коммуникационной компетентностей учащихся посредством работы с технологической картой учащегося, работы друг с другом, с учителем, с учебником. Не.
Урок по теме «Нагревание проводников электрическим током. Закон Джоуля — Ленца».
Урок №50 для 8 класса из раздела «Электрические явления».
Урок «Нагревание проводников электрическим током. Закон Джоуля-Ленца.»
урок физики в 8 классе. с применением сингапурской методики.
Методическая разработка открытого урока в 8 классе по теме «Нагревание проводников электрическим током. Закон Джоуля-Ленца».
Методическая разработка открытого урока в 8 классе по теме «Нагревание проводников электрическим током. Закон Джоуля-Ленца».
Методическая разработка урока физики в 8 классе «Нагревание проводников электрическим током. Закон Джоуля-Ленца».
Методическая разработка урока физики в 8 классе "Нагревание проводников электрическим током. Закон Джоуля-Ленца" с презентацией (Учебник физики в 8 классе авторов А.В.Перышки, Н.А.Роди.
Закон Джоуля-Ленца
Закон Джоуля — Ленца (по имени английского физика Джеймса Джоуля и русского физика Эмилия Ленца, одновременно, но независимо друг от друга открывших его в 1840г) — закон, дающий количественную оценку теплового действия электрического тока.
При протекании тока по проводнику происходит превращение электрической энергии в тепловую, причём количество выделенного тепла будет равно работе электрических сил:
Закон Джоуля — Ленца: количество тепла, выделяемого в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени его прохождения.
Содержание
Практическое значение
Снижение потерь энергии
При передаче электроэнергии тепловое действие тока является нежелательным, поскольку ведёт к потерям энергии. Поскольку передаваемая мощность линейно зависит как от напряжения, так и от силы тока, а мощность нагрева зависит от силы тока квадратично, то выгодно повышать напряжение перед передачей электроэнергии, понижая в результате силу тока. Повышение напряжения снижает электробезопасность линий электропередачи. В случае применения высокого напряжения в цепи для сохранения прежней мощности потребителя придется увеличить сопротивление потребителя (квадратичная зависимость. 10В , 1 Ом = 20В, 4 Ом). Подводящие провода и потребитель соединены последовательно. Сопротивление проводов ( Rw ) постоянное. А вот сопротивление потребителя ( Rc ) растет при выборе более высокого напряжения в сети. Также растет соотношение сопротивления потребителя и сопротивления проводов. При последовательном включении сопротивлений (провод — потребитель — провод) распределение выделяемой мощности ( Q ) пропорционально сопротивлению подключенных сопротивлений. ;
;
; ток в сети для всех сопротивлений постоянен. Следовательно имеем соотношение Qc / Qw = Rc / Rw ; Qc и Rw это константы (для каждой конкретной задачи). Определим, что
. Следовательно, мощность выделяемая на проводах обратно пропорциональна сопротивлению потребителя, то есть уменьшается с ростом напряжения. так как
. ( Qc — константа); Объеденим две последние формулы и выведем, что
; для каждой конкретной задачи
— это константа. Следовательно, тепло выделяемое на проводе обратно пропорционально квадрату напряжения на потребителе.Ток проходит равномерно.
Выбор проводов для цепей
Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при сборке электрических цепей достаточно следовать принятым нормативным документам, которые регламентируют, в частности, выбор сечения проводников.
Электронагревательные приборы
Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.
За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.
Плавкие предохранители
Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.
Вопрос №2. Работа и мощность электрического тока. Закон Джоуля-Ленца (15 мин.)
Способность тела производить работу называется энергией тела. Таким образом, мерой количества энергии является работа. Энергия тела тем больше, чем большую работу может произвести это тело при своем движении. Энергия не исчезает, а переходит из одной формы в другую. Например, в генераторе механическая энергия преобразуется в электрическую энергию, а в двигателе – электрическая в механическую. Однако не вся энергия является полезной, т.е. часть ее расходуется на преодоление внутреннего сопротивления источника и проводов.
Работа электрического тока численно равна произведению напряжения, силы тока в цепи и времени его прохождения. Единица измерения – Джоуль.
Для измерения работы или энергии электрического тока используется электроизмерительный прибор − счетчик электрической энергии.
Электрическая энергия помимо джоулей измеряется в ватт-часах или киловатт-часах:
1 Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.
Мощность электрического тока – это работа, производимая (или потребляемая) в единицу времени. Единица измерения – Ватт.
Для измерения мощности электрического тока используется электроизмерительный прибор − ваттметр.
Кратными единицами измерения мощности являются киловатт или мегаватт:
1 кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.
В табл. 1 приведена мощность ряда устройств.
Мощность устройства, кВт
Лампа карманного фонаря
Лампы осветительные (бытовые)
Лампы в звездах башен Кремля
Двигатель электровоза ВЛ10
Электродвигатель прокатного стана
Гидрогенератор Братской ГЭС
50 000 − 1 200 000
Соотношения между мощностью, током, напряжением и сопротивлением приведены на рис. 1.
Скорость, с которой механическая или другая энергия преобразуется в источнике в электрическую называется мощностью источника:
где Wи – электрическая энергия источника.
Скорость, с которой электрическая энергия преобразуется в приемнике в другие виды энергии, в частности в тепловую, называется мощностью приемника:
Мощность, определяющая непроизвольный расход энергии, например, на тепловые потери в источнике или в проводниках, называют мощностью потерь:
По закону сохранения энергии мощность источника равна сумме мощностей потребителей и потерь:
Это выражение представляет собой баланс мощностей.
Эффективность передачи энергии от источника к приемнику характеризует коэффициент полезного действия (КПД) источника:
где Р1 или Рист – мощность, отдаваемая источником энергии во внешнюю цепь;
Р2 – мощность, получаемая извне или потребляемая мощность;
∆P или Р (Рвн) – мощность, расходуемая на преодоление потерь в источник или приемнике энергии.
Электрический ток представляет собой направленное движение электрически заряженных частиц. При столкновении движущихся частиц с молекулами и ионами вещества кинетическая энергия движущихся частиц передается ионам и молекулам, вследствие чего происходит нагревание проводника. Таким образом, электрическая энергия преобразуется в тепловую.
В 1844 г. русским академиком Э.Х. Ленцем и английским ученым Джоулем одновременно и независимо друг от друга был открыт закон, описывающий тепловое действие тока.
Закон Джоуля-Ленца: при прохождении электрического тока по проводнику количество теплоты, выделяемое проводником, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого электрический ток протекает по проводнику:
где Q– количество теплоты, Дж, I – сила тока, А; R – сопротивление проводника, Ом; t – время, в течение которого электрический ток протекал по проводнику, с.
Закон Джоуля-Ленца используют при расчетах тепловых режимов источников электроэнергии, линий электропередачи, потребителей и других элементов электрической цепи. Преобразование электроэнергии в тепловую имеет очень большое практическое значение. Вместе с тем тепловое действие во многих случаях оказывается вредным (рис. 2).
Работа тока. Закон Джоуля – Ленца (страница 2)
Два последовательно соединённых резистора сопротивлениями 4 Ом и 8 Ом подключены к аккумулятору, напряжение на клеммах которого равно 24 В. Какая тепловая мощность выделяется в резисторе меньшего номинала? (Ответ дайте в ваттах.)
Запишем закон Ома для участка цепи с учетом того, что резисторы соединены последовательно: [I=frac
Так как резисторы соединены последовательно, то через них течет ток одинаковой силы, равной: [I = dfrac<24text< В>><4text< Ом>+8text< Ом>>=dfrac<24text< В>><12text< Ом>>=2 text< А>] Мощность на 1 резисторе найдем по формуле: [P=I^2R_1] [P=(2text< А>)^2cdot4text< Ом>=16 text< Вт>]
По проводнику с сопротивлением (R) = 12 Ом пропускали постоянный ток в течение 9 с. Какое количество теплоты выделилось в проводнике за это время, если через его сечение прошел заряд 3 Кл? (Ответ дайте в джоулях.)
Сила тока показывает, какой заряд прошел через поперечное сечение проводника за промежуток времени: [; ; ; ; ; ; ; ; ; ; I=dfrac
Электроплитка подключена к сети с напряжением 220 В. За некоторое время в ней выделилась энергия 1100 Дж. Какой заряд прошел за это время через плитку? (Ответ дайте в кулонах.)
Сила тока показывает, какой заряд прошел через поперечное сечение проводника за промежуток времени: [I=dfrac] [Delta q=dfrac<1100text< Дж>><220text< В>>=5 text< Кл>]
В цепь последовательно включены вольфрамовая и алюминиевая проволоки одинаковой длины и диаметра. Во сколько раз больше теплоты выделится на вольфрамовой проволоке, если удельное сопротивление вольфрама в два раза больше, чем алюминия?
При последовательном соединении сила тока одинаковая.
Зависимость сопротивления: [R=rho dfrac=dfrac
Сопротивление вольфрамовой проволоки в 2 раза больше, чем алюминиевой.
Количество теплоты можно найти по формуле: [Q=I^2Rt] где (I) — сила тока, (t) — время.
Количество выделившейся теплоты прямо пропорционально сопротивлению проволоки. Следовательно, на вольфрамовой проволоке выделится в 2 раза больше количества теплоты.
Элемент с ЭДС 6 В замкнут на внешнее сопротивление 0,5 Ом. При этом во внешней цепи выделяется мощность 8 Вт. Найдите внутреннее сопротивление элемента. (Ответ дайте в омах.)
Выделившуюся мощность можно найти по формуле: [P=I^2R] где (I) — сила тока, (R) — сопротивление резистора. Тогда сила тока равна: [I=sqrt
Тогда внутреннее сопротивление равно: [r=dfrac
Постоянный электрический ток
75. Сила тока в проводнике равномерно нарастает от I = 0 до I = 2 А в течении времени τ = 5 с. Определите заряд, прошедший по проводнику.
76. Определить плотность тока, если за 2 с через проводник сечением 1,6 мм 2 прошло 2*10 19 электронов.
77. По медному проводнику сечением 0,8 мм 2 течет ток 80 мА. Найдите среднюю скорость упорядоченного движения электронов вдоль проводника, предполагая, что на каждый атом меди приходится один свободный электрон. Плотность меди ρ = 8,9 г/см 3 .
78. Определите суммарный импульс электронов в прямом проводе длиной l = 500 м, по которому течет ток I = 20 А.
79. Определите общее сопротивление между точками А и В цепи, представленной на рисунке, если R1 = 1 Ом, R2 = 3 Ом, R3 = R4 = R6 = 2 Ом, R5 = 4 Ом.
80. Определите сопротивление проволочного каркаса, имеющего форму куба, если он включен в цепь между точками А и В. Сопротивление каждого ребра каркаса r = 3 Ом.
81. Вольтметр, включенный в сеть последовательно с сопротивлением R1, показал напряжение U1 = 198 В, а при включении последовательно с сопротивлением R2 = 2*R1 показал U2 = 180 В. Определите сопротивление R1 и напряжение в сети, если сопротивление вольтметра r = 900 Ом.
82. В цепи на рисунке амперметр показывает силу тока I = 1,5 А. Сила тока через сопротивление R1 равна I1 = 0,5 А. Сопротивление R2 = 2 Ом, R3 = 6 Ом. Определите сопротивление R1, а также силу ток I2 и I3, протекающих через сопротивление R2 и R3.
83. Через лампу накаливания течет ток, равный 0,6 А. Температура вольфрамовой нити диаметром 0,1 мм равна 2200 градусов Цельсия. Ток подводится медным проводом сечением 6 мм 2 . Определите напряжение электрического поля: 1) в вольфраме (удельное сопротивление при 0 градусах ρ = 55 нОм*м, температурный коэффициент сопротивления а = 0,0045 0С -1 ); 2) в меди (ρ = 17 нОм*м).
84. По алюминиевому проводу сечением S = 0,2 мм 2 течет ток I = 0,2 А. Определите силу, действующую на отдельные свободные электроны со стороны электрического поля. Удельное сопротивление алюминия ρ = 26 нОм*м.
85. Электрическая плита мощностью 1 кВт с нихромовой спиралью предназначена для включения в сеть с напряжением 220 В. Сколько метров проволоки диаметром 0,5 мм надо взять для изготовления спирали, если температура нити равна 900 градусов Цельсия? Удельное сопротивление нихрома при 0°C ρ = 1 мкОм*м, а температурный коэффициент сопротивления a = 0,4*10 -3 .
86. Два цилиндрических проводника одинаковой длины и одинакового сечения, один из меди, а другой из железа, соединены параллельно. Определите отношение мощностей токов для этих проводников. Удельные сопротивления меди и железа равны соответственно 17 и 98 нОм*м.
87. Сила тока в проводнике сопротивлением R = 120 Ом равномерно возрастает от I = 0 до Imax = 5 А за время τ = 15 с. Определите выделившееся за это время в проводнике количество теплоты.
88. Сила тока в проводнике сопротивлением R = 100 Ом равномерно убывает от I = 10 А до I = 0 за время τ = 30 с. Определите выделившееся за это время в проводнике количество теплоты.
89. Определить напряженность электрического поля в алюминиевом проводнике объемом V = 10 см 3 , если при прохождении по нему постоянного тока за время t = 5 мин выделилось количество теплоты Q = 2,3 кДж. Удельное сопротивление алюминия ρ = 26 нОм*м.
90. Плотность электрического тока в медном проводе равна 10 А/см 2 . Определите удельную тепловую мощность тока, если удельное сопротивление меди ρ = 17 нОм * м.
91. Определить ток короткого замыкания источника ЭДС, если при внешнем сопротивлении R1 = 50 Ом тока в цепи I1 = 0,2 А, а при R2 = 110 Ом – I2 = 0,1 А.
92. В цепь, состоящую из батареи и резистора сопротивлением R = 8 Ом, включают вольтметр, сопротивление которого RV = 800 Ом, один раз последовательно резистору, другой раз — параллельно. Определите внутреннее сопротивление батареи, если показания вольтметра в обоих случаях одинаковы.
93. На рисунке R1 = R2 = R3 = 100 Ом. Вольтметр показывает UV = 200 В, сопротивление вольтметра RV = 800 Ом. Определите ЭДС батареи, пренебрегая её сопротивлением.
94. На рисунке сопротивление потенциометра R = 2000 Ом, внутреннее сопротивление вольтметра RV = 5000 Ом, U = 220 В. Определите показание вольтметра, если подвижный контакт находится посередине потенциометра.
95. Определите ЭДС и внутреннее сопротивление r источника тока, если во внешней цепи при силе тока 4 А развивается мощность 10 Вт, а при силе тока 2 А мощность 8 Вт.
- 1
- Назад
- Вперед
Ошибка в тексте? Выдели её мышкой и нажми
Остались рефераты, курсовые, презентации? Поделись с нами — загрузи их здесь!