Azotirovanie.ru

Инженерные системы и решения
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лабораторная работа Изучение теплового действия тока и нахождение кпд электрического нагревателя Цели работы: 1) изучить тепловое

Лабораторная работа Изучение теплового действия тока и нахождение кпд электрического нагревателя Цели работы: 1) изучить тепловое

В 5:34 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике «ЕГЭ (школьный)». Ваш вопрос звучал следующим образом: Лабораторная работа Изучение теплового действия тока и нахождение кпд электрического нагревателя Цели работы: 1) изучить тепловое

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

ответ к заданию по физике

НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Семёнова Милена Наумовна — автор студенческих работ, заработанная сумма за прошлый месяц 51 196 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

Ответы на вопросы — в этот раздел попадают вопросы, которые задают нам посетители нашего сайта. Рубрику ведут эксперты различных научных отраслей.

Полезные статьи — раздел наполняется студенческой информацией, которая может помочь в сдаче экзаменов и сессий, а так же при написании различных учебных работ.

Красивые высказывания — цитаты, афоризмы, статусы для социальных сетей. Мы собрали полный сборник высказываний всех народов мира и отсортировали его по соответствующим рубрикам. Вы можете свободно поделиться любой цитатой с нашего сайта в социальных сетях без предварительного уведомления администрации.

Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.

Лабораторная работа №4

Цель работы. Изучить механизм лечебного действия полей УВЧ на модели тканевых структур человека. Ознакомить студентов с аппаратом УВЧ-терапии и научить их работать с ним.

Актуальность. Ультравысокочастотные электрические поля являются самым мощным противовоспалительным средством из всех классических физиотерапевтических технологий. Однако врач должен быть полностью осведомлен обо всех нюансах механизма действия УВЧ-полей и об опасностях негативных последствий при назначении данного метода физиотерапевтического лечения.

Приборы и принадлежности: аппарат УВЧ-терапии, две пробирки (с электролитом и диэлектриком), неоновая лампочка.

Теоретическая часть

Классификационные диапазоны переменного электрического поля, используемого в физиотерапевтических процедурах и диагностике:

  1. Инфразвуковая частота- 0,3-4,5 Гц.
  2. Низкая частота- 4,5-20 Гц.
  3. Звуковая частота- 20 Гц- 20 КГц.
  4. Ультразвуковая частота (УЗЧ)- 20-200 КГц.
  5. Высокая частота (ВЧ)- 0,2-30 МГц.
  6. Ультравысокая частота (УВЧ)- 30-300 МГц.
  7. Сверхвысокие частоты (СВЧ)- свыше 300 МГц:
    • Дециметровый диапазон- 460±4,6 МГц;
    • Сантиметровый диапазон- 2375 МГц.

8. Крайне высокая частота (КВЧ) – миллиметровый диапазон – 40–60 ГГц.

Как следует из классификации диапазонов, к электромагнитным волнам УВЧ относят колебания частотой от 30 МГц до 300 МГц и длиной волны от 10 до1 м. Однако в аппаратах УВЧ-терапии используются две фиксированные частоты – 40.68 МГц (советская техника в наше время не производится; соответственно длина волны – 7,37 м) и 27,12 МГц (длина волны – 11,05 м в технике западных производителей).

Читайте так же:
Как проходит тепловое действие тока

Лечебным фактором УВЧ-воздействий является электрическое поле (э.п.). Оно формируется между электродами (конденсаторные пластины), которые подключаются к аппарату через изолированные гибкие кабели- фидеры. Силовые линии э.п. УВЧ идут от одной пластины к другой, пронизывая ткани тела пациента. Между пластинами и поверхностью тела имеется воздушный зазор или сухая фетровая прокладка, причем суммарный зазор не должен превышать 6 см. Важно помнить технологический принцип:

· для глубокого прогревания тканей указанный зазор устанавливается на большую величину;

· для прогревания поверхностных тканевых структур устанавливаться зазор меньшей величины.

Необходимо также помнить, что э.п. УВЧ пронизывает ткани человека насквозь, т.е. проходит и через токопроводящие ткани и диэлектрики. В этом сквозном действии прослеживается некоторый недостаток УВЧ-терапии, т.е. невозможность фокусирования лечебного воздействия на конкретную глубину тканевой структуры.

Однако максимум поглощения энергии э.п. УВЧ в разных тканях неодинаков:

· Максимальное поглощение имеет место в тканях, бедных жидкостью, а именно: в нервной, костной и соединительной ткани, подкожной жировой клетчатке, сухожилиях и связках.

· В богатых водой тканях (кровь, лимфа, мышечная ткань) тепла образуется на порядок меньше.

Важно отметить, что тепловой компонент в УВЧ- терапии не является определяющим и ощутимо проявляется лишь при выраженном нарастании интенсивности УВЧ- колебаний. В физиотерапевтическом воздействии э.п. УВЧ на ткани выделяют два механизменных компонента:

  • осцилляторный или физико-химический компонент, называемый еще током смещения;
  • ток проводимости – линейно-поступательные перемещения зарядов.

Действительно, из-за большой длины электромагнитных волн УВЧ-диапазона и сквозного проникновения э.п. УВЧ через ткани (их емкостное сопротивлениена этих высоких частотах значительно меньше, чем на низких) э.п. УВЧ воздействует не только на клеточные мембраны, но и на субклеточные структуры.

Макромолекулы (прежде всего белки) в вихревом поле УВЧ совершают колебательные и вращательные смещения — это и есть нетепловой осцилляторныйили физико-химический компонент (т.е. ток смещения). В терапевтическом плане он является ведущим, и на него приходится до 85% энергопревращений.

Высокочастотная поляризация тканей током смещения изменяет прежде всего физико-химические свойства мембран.

Однако в вязкой среде этот ток смещения макромолекул из-за значительных сил трения может сопровождаться значительным преобразованием энергии УВЧ электрического поля в тепловую. Теплообразование при таких процедурах может ощутимо превышать метаболическое теплообразование. А плохое кровоснабжение и обедненность водой указанных выше тканей делают их теплоотдачу неэффективной. Именно поэтому в физиотерапевтических технологиях существуют приемы, ослабляющие тепловой компонент и усиливающие осцилляторно-химическое воздействие э.п. УВЧ на ткани.

Для усиления «осцилляторного» эффекта при УВЧ–терапии используют импульсный режим воздействия электрическим полем, при котором кратковременные (микросекунды) импульсы поля достаточно высокой напряженности разделены в тысячи раз более длительными паузами. В этом случае сохраняется необходимое осцилляторное действие, а тепловой эффект снижается до ничтожной величины. Для УВЧ–терапии в импульсном режиме применяются особые аппараты.

В диэлектрике под действием электрического поля происходит ориентационная и структурная поляризация молекул. Вращательные колебания поляризованных молекул под действием переменного высокочастотного поля сопровождаются потерями энергии на преодоление взаимодействия между молекулами, которое удерживает их в равновесном положении. Эти потери, называемые диэлектрическими, зависят от природы диэлектрика.

Низкомолярные ионы при их механическом линейно-поступательном движении в вязкой среде также обеспечивают продуцирование тепла — это так называемый ток проводимости. Конечно, из-за малой массы ионов относительно белковых молекул теплопродукция при токе проводимости на порядок меньше, чем при токе смещения.

За счет возникающего под действием высокочастотного электрического поля тока проводимости происходит нагрев электролитов.

Тепловые эффекты УВЧ – терапии. Тепловой прогрев тканей вызывает в них стойкую, длительную и глубокую гиперемию:

· усиливается микроциркуляция в тканях (диаметр капилляров возрастает в 3–10 раз);

· увеличивается скорость кровотока в крупных сосудах;

· ускоряется местная лифмодинамика;

· повышается проницаемость биомембран.

Лечебные эффекты УВЧ-терапии:

· экскреторный (выработка и выделение железистыми клетками экскретов и

· миорелаксирующий (понижение тонуса скелетных и гладких мышц и их расслабление);

· иммуномодулирующий (изменение уровня активности местного и общего иммунитета);

· трофический (повышение обменных процессов, энергетического и кислородного обеспечения и активное удаление шлаков).

Тепловое действие тока: закон Джоуля-Ленца, примеры

Двигаясь в любом проводнике, электрический ток передает ему какую-то энергию, из-за чего проводник нагревается. Энергетическая передача осуществляется на уровне молекул: в результате взаимодействия электронов тока с ионами или атомами проводника часть энергии остается у последнего.

Читайте так же:
Как правильно подключить тепловой провод

Тепловое действие тока приводит к более быстрому движению частиц проводника. Тогда его внутренняя энергия возрастает и трансформируется в тепловую.

Формула расчета и ее элементы

Тепловое действие тока может быть подтверждено разными опытами, где работа тока переходит во внутреннюю проводниковую энергию. При этом последняя возрастает. Затем проводник отдает ее окружающим телам, то есть осуществляется теплопередача с нагреванием проводника.

Формула для расчета в этом случае следующая: A=U*I*t.

Количество теплоты можно обозначить через Q. Тогда Q=A или Q=U*I*t. Зная, что U=IR, получается Q=I 2 *R*t, что и было сформулировано в законе Джоуля-Ленца.

Закон теплового действия тока — закон Джоуля-Ленца

Проводник, где протекает электрический ток, изучали многие ученые. Однако, самых заметных результатов удалось добиться Джеймсу Джоулю из Англии и Эмилию Христиановичу Ленцу из России. Оба ученых работали отдельно и выводы по результатам экспериментов делали независимо один от другого.

Они вывели закон, позволяющий оценить тепло, получаемое в результате действия тока на проводник. Его назвали законом Джоуля-Ленца.

Рассмотрим на практике тепловое действие тока. Примеры возьмем следующие:

  1. Обычную лампочку.
  2. Нагревательные приборы.
  3. Предохранитель в квартире.
  4. Электрическую дугу.

Лампочка накаливания

Тепловое действие тока и открытие закона способствовали развитию электротехники и увеличению возможностей для использования электричества. То, как применяются результаты исследований, можно рассмотреть на примере обычной лампочки накаливания.

Она устроена таким образом, что внутри протягивается нить, изготовленная из вольфрамовой проволоки. Этот металл является тугоплавким с высоким удельным сопротивлением. При проходе через лампочку осуществляется тепловое действие электрического тока.

Энергия проводника трансформируется в тепловую, спираль нагревается и начинает светиться. Недостаток лампочки заключается в больших энергетических потерях, так как лишь за счет незначительной части энергии она начинает светиться. Основная же часть просто нагревается.

Чтобы лучше это понять, вводится коэффициент полезного действия, который демонстрирует эффективность работы и преобразования в электроэнергию. КПД и тепловое действие тока используются в разных областях, так как имеется множество устройств, изготовленных на основании этого принципа. В большей степени это нагревательные приборы, электрические плиты, кипятильники и другие подобные аппараты.

Устройство обогревательных приборов

Обычно в конструкции всех приборов для нагревания есть металлическая спираль, в функцию которой и входит нагрев. Если нагревается вода, то спираль устанавливается изолированно, и в таких приборах предусматривается соблюдение баланса между энергией из сети и тепловым обменом.

Перед учеными постоянно ставится задача по снижению энергетических потерь и поиску лучших путей и наиболее эффективных схем их внедрения, чтобы уменьшить тепловое действие тока. Используется, например, способ повышения напряжения во время передачи энергии, благодаря чему сокращается сила тока. Но такой способ, в то же время, понижает безопасность функционирования линий электропередач.

Другим исследовательским направлением является выбор проводов. Ведь именно от их свойств зависят потери тепла и другие показатели. Кроме того, при работе нагревательных приборов происходит большое выделение энергии. Поэтому спирали изготавливаются из специально предназначенных для этих целей, способных выдержать высокие нагрузки, материалов.

Квартирные предохранители

Чтобы улучшить защиту и обезопасить электрические цепи, используются особые предохранители. В роли главной части выступает проволока из легкоплавкого металла. Она проходит в пробке из фарфора, имеет винтовую нарезку и контакт в центре. Пробку вставляют в патрон, расположенный в фарфоровой коробке.

Свинцовая проволока является частью общей цепи. Если тепловое действие электрического тока резко возрастет, сечение проводника не выдержит, и он начнет плавиться. В результате этого сеть разомкнется, и не случится токовых перегрузок.

Электрическая дуга

Электрическая дуга является довольно эффективным преобразователем электрической энергии. Она используется при сварке металлических конструкций, а также служит мощным световым источником.

В основу устройства входит следующее. Берут два угольных стержня, подсоединяют провода и прикрепляют их в изолирующих держателях. После этого стержни подключают к источнику тока, который дает малое напряжение, но рассчитан на большую силу тока. Подключают реостат. Угли в городскую сеть включать запрещается, так как это может стать причиной пожара. Если коснуться одним углем о другой, то можно заметить, как сильно они раскалятся. Лучше не смотреть на это пламя, потому что оно вредно для зрения. Электрическую дугу используют в печах для плавки металла, а также в таких мощных осветительных приборах, как прожекторы, кинопроекторы и прочее.

Читайте так же:
Сила тока формулы через количество теплоты

Лабораторная работа тепловое действие электрического тока

Внимание Скидка 50% на курсы! Спешите подать
заявку

Профессиональной переподготовки 30 курсов от 6900 руб.

Курсы для всех от 3000 руб. от 1500 руб.

Повышение квалификации 36 курсов от 1500 руб.

Лицензия №037267 от 17.03.2016 г.
выдана департаментом образования г. Москвы

Конспект урока физкультуры на тему «Тепловое действие электрического тока. Закон Джоуля—Ленца»

Тема урока: Тепловое действие электрического тока. Закон Джоуля—Ленца

объяснить причину нагревания проводников электрическим током на основе положений классической электронной теории;

экспериментально получить зависимость количества теплоты, выделяемого проводником, от параметров цепи;

применить закон сохранения и превращения энергии для процессов, происходящих в цепи при прохождении электрического тока;

познакомить с математической записью закона Джоуля – Ленца.

Формировать умения видеть проблему, формулировать гипотезу, делать обобщения и выводы;

Развивать научное мышление через использование полученных теоретических знаний для объяснения физических явлений;

Формировать познавательный интерес к физике через использование информационных технологий и постановку эксперимента;

Развивать речь учащихся через использование научной терминологии.

воспитание самостоятельности, активности, любознательности;

формирование коммуникативных навыков;

воспитание самодисциплины, ответственности за результат своего труда.

Демонстрационное: компьютер, медиапроектор.

Лабораторное: источники тока, реостат, соединительные провода, ключи, лампочки, амперметр.

Организационный момент, приветствие.

Постановка проблемы – заморочка.

Сообщение темы урока – запись в тетрадь.

Деление класса на группы.

Постановка проблемы исследований.

Работа в группах: планирование эксперимента, выполнение эксперимента, формулировка вывода.

Представление исследований, обобщение результатов.

Знакомство с математической записью закона Джоуля – Ленца.

Домашнее задание. Решение заморочки.

Закрепление закона Джоуля – Ленца при решении качественных задач.

Подведение итога урока.

Оценивание работы учащихся.

На экране – эпиграф урока. Слайд 1.

Здравствуйте, ребята! Начинаем наш урок. Надеюсь, что минуты общения будут приятными и плодотворными. Будьте смелее и активнее, не бойтесь высказывать своё мнение. Успеха нам!

Сначала я хочу заморочить вам голову задачей. Слушайте и думайте! Слайд 2 . Читаю задачу.

Кто готов рассуждать? Затрудняетесь? Тогда найдем решение вместе.

На прошлых уроках мы говорили о работе тока. Вспомним, каков же механизм совершения электрическим током работы в проводнике. Для помощи – картинка из учебника, знакомая вам.

Слайд 2. Механизм работы тока в проводнике.

Таким образом, описав механизм совершения работы Слайд 4 , мы сделали вывод о переходе работы тока в теплоту на основании фундаментального законы природы – закона сохранения и превращения энергии. И переходим к непосредственному изучению темы урока:

Слайд 5: Нагревание проводников электрическим током. Закон Джоуля – Ленца. Запишите тему урока в тетради.

Слайд 6. Задачи урока:

Объяснить причину нагревания проводников электрическим током;

Экспериментально обнаружить зависимость выделяемой теплоты от параметров электрической цепи;

Сделать вывод из экспериментальной и теоретической работы;

Сформулировать закон Джоуля—Ленца;

Рассмотреть практическое применение теплового действия тока.

Для дальнейшей работы нам нужно поделиться на три группы: две группы экспериментаторов и группа теоретиков. Деление на группы. Обращаемся к теме урока и формулируем проблему: Что же нам интересно узнать по теме урока? Слайд 7. Наша задача: исследовать зависимость количества выделяемой теплоты от параметров цепи.

От чего может зависеть выделяемая теплота в электрической цепи? Я готова выслушать ваши предположения, ребята. Выдвигайте гипотезы. Чтобы не быть оторванными от жизни, сначала приведем примеры: где в быту мы встречаетесь с нагреванием проводников? Вернемся к вопросу: от каких параметров может зависеть теплота? А видна ли эта зависимость теоретически? Да, Q=A, A=IUt

Обсудим идею опыта. Как вы понимаете, что количество теплоты зависит от силы тока в цепи? От сопротивления цепи? Какие будут ваши предложения по оценке количества теплоты? По каким признакам можем судить, где теплоты выделяется больше, а где меньше? На ощупь(?!), термометром(?), по накалу ламп. Группы экспериментаторов могут приступать к выполнению своих исследований. Не забывайте о соблюдении техники безопасности!

Группа теоретиков будет на примере решения задач получать зависимость выделяемой теплоты от силы тока в цепи и сопротивления. Слайд 8.

Читайте так же:
Действие электрического тока тепловое химическое магнитное механическое примеры

Учащиеся выполнили работу, говорят выводы. Записать вывод закона Джоуля – Ленца в тетрадь. Слайд 9. Формулирую закон.

Один из авторов закона – русский физик Эмилий Христианович Ленц. Слайд 10.

Таким образом, мы изучили одно из важных проявлений электрического тока. И теперь вы сможете рассудить заморочку.

Слайд 11. Подошло время записать домашнее задание и ответить на вопрос-заморочку.

Напомню её. Слайд 12.

Рассуждения учащихся, ответ на вопрос-заморочку.

Нагревание проводников электрическим током – явление, которое нужно учитывать в жизни. Как вы думаете, почему? А что будет, если проводка в доме сильно нагреется? Слайд 13.

Короткое замыкание. Слайд 14.

Практическое применение теплового действия тока. Слайд 15. Нагревание проводников электрическим током – явление, которое широко применяется в жизни. Выводы учащихся.

Подходит к концу урок, мы должны подвести итог работе.

Слайд16. Что мы узнали? Чему мы научились? Кто работал лучше всех? Кто работал хорошо? (Увидеть положительное в каждом ребенке)

Осталось немного времени, чтобы мы посоревновались в решении интересных качественных задач. Читайте, думайте и объясняйте! Слайд 17.

Лабораторная работа тепловое действие электрического тока

Лабораторная работа №1

Ознакомление с электроизмерительными приборами и измерениями электрических величин.

Изучение электроизмерительных приборов, используемых в лабораторных работах, выполняемых на стенде. Получение представлений о пределе измерения и цене деления, абсолютной и относительной погрешности, условиях эксплуатации и других характеристиках стрелочных электроизмерительных приборов, получение навыков работы с цифровыми измерительными приборами.

2. Краткие теоретические сведения.

Контроль работы электрооборудования осуществляется с помощью разнообразных электроизмерительных приборов. Наиболее распространенными электроизмерительными приборами являются приборы непосредственного отсчета. По виду отсчетного устройства различают аналоговые (стрелочные) и цифровые измерительные приборы.

На лицевой стороне стрелочных приборов изображены условные обозначения, определяющие классификационную группу прибора. Они позволяют правильно выбрать приборы и дают некоторые указания по их эксплуатации.

В цепях постоянного тока для измерений токов и напряжений применяются в основном приборы магнитоэлектрической системы. Принцип действия таких приборов основан на взаимодействии магнитного поля постоянного магнита и измеряемого тока, протекающего по катушке. Угол поворота стрелки α прямо пропорционален измеряемому току I: α = К × I. Шкалы магнитоэлектрических приборов равномерные.

В измерительных механизмах электромагнитной системы, применяемых для измерений в цепях переменного и постоянного тока, вращающий момент обусловлен действием магнитного поля измеряемого тока в неподвижной катушке прибора на подвижный ферромагнитный якорь. Угол поворота стрелки α здесь пропорционален квадрату тока: α = К × 2I. Поэтому шкала электромагнитных приборов обычно неравномерная, что является недостатком этих приборов. Начальная часть шкалы не используется для измерений. Для измерений токов и напряжений в цепях переменного тока применяются также приборы выпрямительной системы. Такие приборы содержат выпрямительный преобразователь и магнитоэлектрический измерительный механизм. Они имеют более линейную шкалу, чем приборы электромагнитной системы и достаточно широкий частотный диапазон.

Для практического использования стрелочного измерительного прибора необходимо знать его предел измерений (номинальное значение) и цену деления (постоянную) прибора. Предел измерений – это наибольшее значение электрической величины, которое может быть измерено данным прибором. Это значение обычно указано на лицевой стороне прибора. Один и тот же прибор может иметь несколько пределов измерений. Ценой деления прибора называется значение измеряемой величины, соответствующее одному делению шкалы прибора. Цена деления прибора — С легко определяется как отношение предела измерений AНОМ к числу делений шкалы N:

На лицевой стороне стрелочных прибора указывается класс точности, который определяет приведенную относительную погрешность прибора γПР.

Приведенная относительная погрешность прибора – это выраженное в процентах отношение максимальной для данного прибора абсолютной погрешности ΔА к номинальному значению прибора (пределу измерений) AНОМ:

01

Промышленность в соответствии с ГОСТ выпускает приборы с различными классами точности (0,05; 0,1; 0,2; 0,5; 1,5; 2,5; 4,0).

Зная класс точности прибора, можно определить абсолютную ΔА и относительную погрешности измерения γИЗМ, а также действительное значение измеряемой величины AД:

02

Расчетную относительную погрешность измерения в любой точке шкалы прибора можно определить, полагая, что его допустимая абсолютная погрешность ΔА известна и постоянна:

03

где АИЗМ – условное измеренное значение величины, задаваемое в пределах

Читайте так же:
Серебристо белое мягкое пластичное вещество проводит тепло электрический ток

шкалы прибора от минимального значения до номинального значения данного прибора. Обратить внимание на значение относительной погрешности измерения, соответствующее предельному значению измеряемой величины, и сравнить его с классом точности прибора.

Нетрудно сделать вывод, что относительная погрешность измерения тем больше, чем меньше измеряемая величина по сравнению с номинальным значением прибора. Поэтому желательно не пользоваться при измерении начальной частью шкалы стрелочного прибора.

Для обеспечения малой методической погрешности измерения необходимо, чтобы сопротивление амперметра было значительно меньше сопротивления нагрузки, а сопротивление вольтметра было значительно больше сопротивления исследуемого участка.

В табл. 1 приведены некоторые условные обозначения, приводимые на лицевых панелях стрелочных измерительных приборов, определяющие их свойства и условия эксплуатации.

При проведении измерений в электрических цепях широкое применение получили цифровые измерительные приборы, например мультиметры – комбинированные цифровые измерительные приборы, позволяющие измерять постоянное и переменное напряжение, постоянный и переменный ток, сопротивления, проверять диоды и транзисторы. Представление результата измерения происходит на цифровом отсчетном устройстве в виде обычных удобных для считывания десятичных чисел. Наибольшее распространение в цифровых отсчетных устройствах мультиметров получили жидкокристаллические и светодиодные индикаторы. В лабораторном стенде используются цифровые приборы для измерения постоянных и переменных токов, а также цифровой измеритель мощности. Для переключения режима работы цифровых амперметров стенда (РА1, РА2, РА3 и РА4) на его передней панели установлен тумблер, который для измерения постоянного тока следует установить в позицию «=», для измерения действующих значений переменных токов – в позицию «

». Для измерения постоянного тока входная клемма (+) цифрового амперметра выделена красным цветом.

Цифровой измеритель мощности предназначен для измерения параметров электрической цепи:

– действующего значения напряжения U (True RMS) в диапазоне 0…30 В;

– действующего значения тока I (True RMS) в диапазоне 0…300 мА;

– активной мощности P в диапазоне 0…600 Вт;

– частоты f в диапазоне 35…400 Гц;

– угла сдвига фаз ϕ (Fi) между током и напряжением.

Условное графическое обозначение

Содержание условного обозначения

Наименование измеряемой величины (ампер, вольт, ватт, ом, герц, коэффициент мощности, фарада, генри)

Магнитоэлектрический измерительный механизм

Электромагнитный измерительный механизм

Магнитоэлектрический измерительный механизм с выпрямителем

0,05; 0,1; 0,2; 0,5; 1,5; 2,5; 4,0

Класс точности прибора

07

Рабочее положение шкалы прибора:

под углом, например 60°

08

Прибор предназначен для работы

в цепи постоянного тока;

постоянного и переменного;

в трехфазной цепи переменного тока

А (или отсутствие буквы) – прибор для сухих отапливаемых помещений с температурой +10°С …+35°С и влажности до 80% при 30°С;

Б – прибор для закрытых не отапливаемых помещений с температурой — 30°С …+40°С и влажности до 90% при 30°С;

B – приборы для полевых и морских условий:

В1 – при температуре -40°С … +50°С и В2 – при температуре -50°С … +60°С и влажности до 95% при 35°С;

В3 – при температуре -40°С … +50°С и влажности до 98% при 40°С

Измерительная цепь прибора изолирована от корпуса и испытана напряжением, например, 2 кВ

Рабочий частотный диапазон прибора

– клеммы подачи входного измеряемого сигнала (генератора): клемму «Вх» и общую клемму, клеммы подключения потребителя (нагрузки): клемму «Вых» и общую клемму. Шунт для измерения тока нагрузки подключен между клеммами «Вх» и «Вых»;

– жидкокристаллический четырехстрочный индикатор для вывода информации;

– кнопку «f/cosϕ/ϕ» изменения вывода информации в четвертой строке индикатора (соответственно, частоты, коэффициента мощности cosϕ или угла сдвига фаз Fi между током и напряжением).

С задней стороны прибора установлены розетка для подключения питания сети и колодка предохранителя.

С помощью кнопки «f/cosϕ/ϕ» можно изменять вывод информации в четвертой строке индикатора. Для вывода требуемого параметра в четвертой строке индикатора кнопку необходимо нажать на 1…2 секунды.

Изменения схемы подключения прибора и лабораторной установки выполнять при выключенном питании прибора . В противном случае возможны изменения показаний прибора, а также возникновение нарушений в работе индикатора прибора.

3. Порядок выполнения работы.

3.1. Изучение паспортных характеристик стрелочных электроизмерительных приборов. Для этого внимательно рассмотреть лицевые панели стрелочных амперметров и заполнить табл. 2.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector