Azotirovanie.ru

Инженерные системы и решения
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловые реле для электродвигателя

Тепловые реле для электродвигателя

Тепловые реле предохраняют электродвигатель от перегрева, вызванного главным образом его перегрузкой, а также потерей фазы или отклонениями параметров сети от их номинальных значений.

Принцип действия тепловых реле основан на изгибании биметаллического элемента при его нагреве. Биметаллический элемент выполнен из двух металлических пластин с разными коэффициентами линейного расширения. При нагреве одна из пластин удлиняется в большей степени, а поскольку пластины скреплены, происходит изгиб всего элемента. Таким образом, в случае превышения тока определенного значения биметаллический элемент нагревается и изгибается, приводя в действие контакт реле. Очевидно, что при увеличении тока уменьшается время срабатывания реле. Зависимость времени срабатывания реле от тока называется характеристикой теплового реле.

Рис. 1. Характеристика теплового реле

На рисунке 1 приведен пример характеристики реле в холодном состоянии, где Iустн – номинальный ток уставки, а Iуст – ток, который протекает через реле в определенный момент времени. Под номинальным током уставки понимается наибольший ток, который в течение длительного времени при данной настройке реле не приводит к его срабатыванию.

Тепловые реле надежно защищают электродвигатель от перегрузок только в случае его эксплуатации в режиме S1 (продолжительный режим работы). Температурные условия мест, в которых установлены реле и защищаемый двигатель должны быть полностью идентичны. Если двигатель работает в повторно-кратковременном режиме, то защита его от перегрузок тепловым реле неэффективна, кроме того, возможны ложные срабатывания.

В случае, когда величины токов электродвигателя имеют относительно большие значения, тепловое реле может включаться через трансформаторы тока.

Тепловое реле необходимо выбрать таким образом, чтобы его номинальные значения напряжения и тока соответствовали аналогичным значениям двигателя, далее необходимо выставить ток уставки согласно следующим выражениям:

где Iдн – номинальное значение линейного тока двигателя, Тср – температура окружающей среды, в которой установлено тепловое реле, Тн – температура калибровки реле;

Современные электродвигатели выполняются с изоляцией класса F и превышением температуры по классу В. Таким образом, даже при температуре окружающей среды 40 0 С обеспечивается температурный запас 25 0 С, благодаря чему электродвигатель может выдерживать кратковременные перегрузки без разрушения изоляции. Реле, подобранные согласно данным рекомендациям, обеспечивают надежную защиту двигателей при длительных перегрузках 15-20%. Таким образом, обеспечивается надежная продолжительная работа электродвигателя и обеспечивается заложенный заводом-изготовителем ресурс работы.

Если же нагрузка двигателя неравномерная (в одни короткие периоды времени больше номинальной, в другие наоборот – меньше), во избежание ложных срабатываний защиту необходимо несколько загрубить. С этой целью токи уставки Iуст, полученные по формулам, приведенным выше, следует увеличить на 10%.

Важно! Тепловое реле не защищает двигатель от коротких замыканий, поэтому его использование возможно только совместно с устройствами защиты от токов короткого замыкания (автоматические выключатели, предохранители, реле максимального тока).

Принцип работы и подключение теплового реле для электродвигателя

Тепловое реле

Для защиты электромоторов от перегрузок активно используются тепловые реле.

Хотя было создано довольно много видов этих приборов, область их применения практически аналогична.

При выборе теплового реле для электродвигателя необходимо знать особенности конструкции устройства, а также принцип его работы.

Начинающим электрикам, кроме этого, предстоит разобраться со схемами подключения прибора.

Конструктивные особенности

В основе устройства и принципа действия теплового реле (ТР) лежит закон Джоуля-Ленца — выделяемое на участке электроцепи количество тепла пропорционально сопротивлению этого участка и квадрату силы тока. Это физическое явление сегодня активно применяется в тепловых разъединителях. Небольшой участок электрической цепи, выступающий в роли излучателя, наматывается на изолятор спиралью.

Проходящий через электрооборудование ток протекает и в этом участке. Рядом со спиралью расположена пластина, изготовленная из биметаллического сплава. При достижении определенной температуры она изгибается и воздействует на группу контактов.

Особенность пластины заключается в том, что она изготовлена из двух металлов, обладающих разными показателями коэффициента теплового расширения, которые составляют один элемент.

Конструкция прибора показана на рисунке.

Тепловое реле для электродвигателя

К проводникам подсоединены три фазы питания электромотора. Обмотка нагрева находится над биметаллической пластиной, что позволяет уменьшить число ложных срабатываний прибора. Пластины упираются в подвижный элемент конструкции, который воздействует на механизм разъединителя. В верхней части прибора расположены две группы контактов (закрытые NC и открытые NO), а также регулятор токовой нагрузки пружинного типа.

Основные виды

Так как существует довольно много видов электротеплового реле, то стоит познакомиться с ними. Они различаются областью применения и даже имеют собственную классификацию. Среди основных типов ТР выделяют:

Электротепловое реле

  • РТЛ — трехфазный прибор, обеспечивающий защиту электромотора от перекоса фаз, заклинивания ротора, а также затянутого пуска. Реле этого типа может монтироваться на контакты пускателя типа ПМЛ либо работать самостоятельно с клеммником КРЛ.
  • РТТ — устройство предназначено для работы в трехфазной электросети и выполнения функций, аналогично РТЛ. Прибор может использоваться самостоятельно при монтаже на панели либо устанавливаться на пускатели типов ПМЕ и ПМА.
  • РТИ — трехфазное реле, необходимое для защиты двигателей от асимметрии фаз, заклинивания и длинного пуска. Его можно монтировать на пускатели двух типов — КМИ либо КМТ.
  • ТРН — твердотельный прибор предназначен для применения в двухфазных электросетях. Он позволяет контролировать режим пуска и работы электродвигателя. Устройство оснащено ручным механизмом возврата контактов в начальное положение. Особое внимание нужно уделить тому факту, что на работу реле температура внешней среды практически не оказывает никакого влияния.
  • РТК — для контроля температуры используется щуп, расположенный в корпусе электрооборудования. Это реле тепловое, оно способно контролировать только один параметр.
  • РТЭ — прибор плавления сплава. Его главный проводник изготовлен из определенного металла, который при достижении конкретной температуры плавится. В результате происходит разъединение электроцепи.

Таким образом, несмотря на имеющееся различия, все эти приборы предназначены для решения одной задачи — защиты электрического оборудования.

Принцип работы

Принцип работы теплового реле

Познакомившись с конструкцией и типами устройств, необходимо разобраться с принципом работы теплового реле. На каждом электромоторе производитель устанавливает табличку с техническими характеристиками. Одной из наиболее важных среди них является показатель номинального рабочего электротока. Сегодня используется много агрегатов, во время пуска или работы которых это значение может существенно превышаться.

Читайте так же:
Мощность тока равна количеству теплоты

Если перегрузки наблюдаются в течение длительного временного отрезка, то возможен перегрев катушек, разрушение изоляционного слоя и последующий выход мотора из строя. Защитные ТР способны влиять на цепь управления, размыкая контакты либо подавая предупреждающий сигнал обслуживающему персоналу. Приборы монтируются в силовую электроцепь перед двигателем, чтобы иметь возможность контролировать показатель проходящего через агрегат тока.

Во время настройки защитного устройства параметры выставляются в бо́льшую сторону от номинального паспортного значения на величину от 10 до 20%. К вопросу настройки реле нужно подходить ответственно, так как разъединение цепи при перегрузке происходит не мгновенно. В зависимости от различных факторов для этого может потребоваться 5−20 минут.

Схемы подключения

Тепловое реле устройство

Чаще всего при подключении ТР к магнитным пускателям используется группа нормально замкнутых контактов. При этом к кнопке «Стоп» они подсоединяются последовательно. Если используется такая схема, то нормально разомкнутые контакты можно задействовать в системе сигнализации срабатывания устройства. В более сложных автоматизированных системах эта группа контактов часто применяется для активации аварийных протоколов остановки конвейерных цепей обслуживания.

Подключение ТР можно выполнить самостоятельно, но предварительно нужно разобраться с конструктивными особенностями прибора и принципом его функционирования. Независимо от типа используемого устройства и количества клемм магнитного пускателя, сложностей с внедрением ТР в схему возникнуть не должно.

Прибор монтируется перед электромотором, а его нормально замкнутые контакты должны быть последовательно соединены с кнопкой остановки оборудования.

Рекомендации по выбору

При выборе прибора необходимо ориентироваться на область его использования, а также имеющийся функционал. Проблем с поиском нужного защитного устройства практически никогда не возникает. Особое внимание в это время нужно уделить следующим моментам:

  • Однофазные ТР с автоматическим сбросом возвращаются в исходное состояние по истечении определенного отрезка времени. Если электродвигатель в этот момент еще перегружен, прибор сработает повторно.
  • Реле, имеющие систему компенсации температуры окружающей среды, способны работать в широком температурном диапазоне.
  • Некоторые модели приборов обладают способностью контролировать состояние фаз. Они сработают не только при перегреве мотора, но также, если был обнаружен обрыв фаз, их разворот либо дисбаланс.
  • Существуют ТР, способные срабатывать при недогрузке электрооборудования. Такая ситуация возможна, например, когда насос начал функционировать всухую.

Стоимость реле находится в широком ценовом диапазоне. Во время выбора прибора нужно внимательно изучить его технические характеристики. В паспорте можно также найти и рекомендации по подключению ТР. Впрочем, этот процесс не является сложным, и проблемы возникают крайне редко.

Защита электродвигателя: основные виды, схемы подключения и принцип работы. Инструкция как установить своими руками

Наверно все знают, что различные устройства работают на основе электрических двигателей. Но для чего нужна защита электродвигателей осознает лишь малая часть пользователей. Оказывается они могут сломаться в результате различных непредвиденных ситуаций.

Чтобы избежать проблем с высокими затратами на ремонт, неприятных простоев и дополнительных материальных потерь используются качественные защитные устройства. Далее разберемся в их устройстве и возможностях.

Краткое содержимое статьи:

Как создается защита для электродвигателя?

  • Внешняя версия защиты для предохранения от короткого замыкания. Обычно относится к разным видам либо представлена в виде реле. Они обладают официальным статусом и обязательны к установке согласно нормам безопасности на территории РФ.
  • Внешняя версия защиты электродвигателей от перегрузки помогает предотвратить опасные повреждения либо критические сбои в процессе работы.
  • Встроенный тип защиты спасет в случае заметного перегрева. И это защитит от критических повреждений либо сбоев в процессе эксплуатации. В этом случае обязательны выключатели внешнего типа иногда применяется реле для перезагрузки.
Читайте так же:
Тепловой расцепитель автоматического выключателя время срабатывания

Из-за чего отказывает электродвигатель?

В процессе эксплуатации иногда появляются непредвиденные ситуации, останавливающие работу двигателя. Из-за этого рекомендуется заранее обеспечить надежную защиту электродвигателя.

Можете ознакомиться с фото защиты электродвигателя различного типа чтобы иметь представление о том, как она выглядит.

  • Недостаточный уровень электрического снабжения;
  • Высокий уровень подачи напряжения;
  • Быстрое изменение частоты подачи тока;
  • Неправильный монтаж электродвигателя либо хранения его основных элементов;
  • Увеличение температуры и превышение допустимого значения;
  • Недостаточная подача охлаждения;
  • Повышенный уровень температуры окружающей среды;
  • Пониженный уровень атмосферного давления, если эксплуатация двигателя происходит на увеличенной высоте на основе уровня моря;
  • Увеличенная температура рабочей жидкости;
  • Недопустимая вязкость рабочей жидкости;
  • Двигатель часто выключается и включается;
  • Блокирование работы ротора;
  • Неожиданный обрыв фазы.

Чтобы защита электродвигателей от перегрузки справилась с перечисленными проблемами и смогла защитить основные элементы устройства необходимо использовать вариант на основе автоматического отключения.

Часто для этого используется плавкая версия предохранителя, поскольку она отличается простотой и способна выполнить много функций:

Версия на основе плавкого предохранительного выключателя представлена аварийным выключателем и плавким предохранителем, соединенных на основе общего корпуса. Выключатель позволяет размыкать либо замыкать сеть с помощью механического способа, а плавкий предохранитель создает качественную защиту электродвигателя на основе воздействия электрического тока. Однако выключателем пользуются в основном для процесса сервисного обслуживания, когда необходимо остановить передачу тока.

Плавкие версии предохранителей на основе быстрого срабатывания считаются отличными защитниками от коротких замыканий. Но непродолжительные перегрузки могут привести к поломке предохранителей этого вида. Из-за этого рекомендуется использовать их на основе воздействия незначительного переходного напряжения.

Плавкие предохранители на основе задержки срабатывания способны защитить от перегрузки либо различных коротких замыканий. Обычно они способны выдержать 5-краткое увеличение напряжения в течение 10-15 секунд.

Важно: Автоматические версии выключателей отличаются по уровню тока для срабатывания. Из-за этого лучше использовать выключатель способный выдержать максимальный ток в процессе короткого замыкания, появляющегося на основе данной системы.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.

Универсальные блоки защиты

Различные универсальные блоки защиты электродвигателей помогают уберечь двигатель с помощью отключения от напряжения либо блокированием возможности запуска.

  • Проблемы с напряжением, характеризующиеся скачками в сети, обрывами фаз, нарушением чередования либо слипания фаз, перекосом фазного или линейного напряжения;
  • Механической перегруженности;
  • Отсутствие крутящего момента для вала ЭД;
  • Опасных эксплуатационной характеристике изоляции корпуса;
  • Если произошло замыкание на землю.

Хотя защита от понижения напряжения, может быть, организована и другими способами мы рассмотрели основные из них. Теперь у вас есть представление о том зачем необходимо защищать электродвигатель, и как это осуществляется с помощью различных способов.

Установка теплового реле по току

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах». Широкая специализация компании позволяет обеспечивать покупателей разнообразной продукцией. Каждый клиент сможет приобрести максимальное количество оборудования для проведения работ в одном месте, ознакомиться детальнее можно по адресу https://unikabel.ru/

Тепловое реле — технические характеристики

Для того чтобы выбрать подходящее тепловое реле необходимо подобрать его по техническим характеристикам, которые должны соответствовать существующей нагрузке и требованиям, необходимым для эксплуатации электрического механизма.

К таким характеристикам относятся:

  • номинальный ток защиты;
  • напряжение электрической сети;
  • мощность коммутирования контактных соединений;
  • показатель чувствительности к перекосу фаз.

Важными показателями являются также:

  • границы регулирования срабатывания установленного тока;
  • число и тип дополнительных элементов;
  • порог срабатывания;
  • класс отключения.

Номинальный ток защитного устройства должен соответствовать номинальному току электродвигателя, который указан на его корпусе. Сетевое напряжение прибора должно быть идентично показателю электрической сети, в которую будет подключен электромотор.

Читайте так же:
Как вычислить тепловую мощность тока

Необходимо обратить внимание на тип и количество клемм, по причине различных способов подключения. Защитное приспособление должно также соответствовать мощности электродвигателя с целью исключения ложных срабатываний.

Установка теплового реле по току

Описание

Чем выше значение протекающего через реле РТ-03 тока, тем сильнее изгибается биметаллическая пластина реле, размещенная в каждом полюсе. При достижении током величины 1.1 х заданное значение тока уставки изгиб пластины становится таким, что она размыкает контакт, и электродвигатель отключается от сети.

Тепловое реле перегрузки РТ-03 может устанавливаться непосредственно вместе с контактором, так и отдельно от него на специальное основание ОС-03.

Сфера применения

Тепловые реле перегрузки РТ-03 разработаны для защиты цепей переменного тока и электродвигателей от перегрузки, асимметрии фаз, затянутого пуска и заклинивания ротора.

Перегрузка возникает при превышении расчетных нагрузок двигателя.

Асимметрия фаз — падение напряжения в одной из фаз. Оно вызвано несбалансированной нагрузкой либо недостаточной площадью контакта при подключении двигателя, либо слабой затяжкой одного из контактов. Асимметрия фаз приводит к сильному нагреву, вибрациям, разрушениям подшипников и обмоток электродвигателя. При асимметрии фаз масштаба 50% срок службы двигателя снижается в 5-10 раз.

Затянутый пуск — пуск двигателя, который происходит в плохих условиях, например, при блокировке ротора или когда двигатель не выходит на номинальную скорость.

Заклинивание ротора — механическое повреждение ротора, при котором что-то препятствует его вращению.

Все вышеперечисленные проблемы могут привести к поломке электродвигателя! Реле РТ-03 позволяет их избежать и продлить срок службы двигателя.

  • Технические
    характеристики
  • Схемы и
    графики
  • Полный
    ассортимент
  • Упаковка и
    маркировка
  • Преимущества
  • Наличие на складе
  • 2D/3D модели

Технические характеристики силовой цепи

Параметр / НаименованиеРТ-03 09-18AРТ-03 25-32AРТ-03 40-95A
Соответствие стандартамТР ТС 004 / 2011, ГОСТ IEC 60947-4-1, ГОСТ IEC 60947-5-1
Номинальное рабочее напряжение Ue, В230, 400, 660
Номинальное напряжение изоляции Ui, В690
Номинальное импульсное напряжение Uimp, кВ8 — основная цепь, 6 — дополнительная
Частота сети переменного тока, Гц50/60
Диапазон уставок тока реле (в зависимости от модели), А0,1-186,3-3218-95
Класс расцепления10А10А10А
Сечение подключаемого провода для силовых контактов, мм 21-2,54-610-35
Момент затяжки для силовых контактов, Н·м1,21,76
Условия эксплуатацииУХЛ4УХЛ4УХЛ4

Технические характеристики встроенных дополнительных контактов

Электрические схемы

Установка реле под контактор

Независимая установка (через основание)

Характеристики срабатывания

График 1: 3 полюса из «холодного состояния»

График 2: 2 полюса (обрыв фазы) из «холодного состояния «

График 3: 3 полюса из «горячего состояния»

Виды тепловых реле (РТТ, РТЛ, ТРН, РТИ)

Тепловые реле РТТ применяются в тех случаях, когда требуется обеспечить эффективную защиту трехфазных асинхронных двигателей от перегрузок, длительность которых превышает допустимую (которые могут возникнуть, например, при выпадении одной из фаз). Как правило, они являются комплектующими частями в управляющих схемах электроприводов и в магнитных пускателях.

Тепловые реле РТЛ используются в тех случаях, когда требуется защитить от перегрузок по продолжительности, а также о несимметричности тока, например, при выпадении одной из фаз. Этот тип реле может устанавливаться как на пускателях, так и отдельно, при наличии клеммников.

Двухфазное тепловое реле ТРН используется, как правило, на магнитных пускателях в асинхронных двигателях. Его особенностью является возможность использования в сетях постоянного тока.

Тепловое реле РТИ выполняет те же функции, что и описанные выше, а также обеспечивает защиту от затянутого пуска. Данный тип реле обладает собственным потреблением энергии, поэтому дополнительно при его использовании рекомендуется устанавливать предохранители.

Подготовительные работы

Перед тем как приступить к сборке схемы подключения необходимо:

  1. Обесточить участок работы и проверить отсутствие напряжения индикаторной отверткой.
  2. Определить величину рабочего напряжения катушки, которая указывается всегда не на корпусе пускателя, а на самой катушке. Тут 2 варианта- 220 или 380 Вольт. Если 220 В, тогда на контакты катушки подается фаза и ноль. Если 380- 2 разноименные фазы. Это важно, а иначе при неправильном подключении катушка может перегореть или будет не включать силовые контакты до конца.
  3. Вам понадобится одна кнопка «Стоп» красного цвета с постоянно замкнутыми контактами и одна кнопка «Пуск» черного или зеленного цвета с постоянно разомкнутыми контактами.
  4. Запомните, что силовые контакты включают или выключают только фазы, а приходящие и отходящие нули и заземляющие проводники всегда соединяются между собой на клеммнике в обход пускателя. Они не коммутируются, для подключения катушки на 220 Вольт дополнительно с клеммника берется ноль в схему управления пускателем.

Как работает тепловое реле защиты электродвигателя

Данный прибор осуществляет контроль над величиной тока, и в случае длительного отклонения от номинала установки производит размыкание контактов. Таким образом, цепь управления остается без питания, а пусковое устройство размыкается. Тепловое реле защищает агрегат от механических перегрузок, заклинивания ротора, перекоса фаз и других аварийных ситуаций.

Читайте так же:
Постоянный ток формулы количество теплоты

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

Маркировка тепловых реле

В маркировке указывается большинство важных характеристик ТР. Пример обозначения: РТЛ-Х1Х2Х3-Х4-Х5А-Х6А-Х7Х8, где

Тепловое реле – эффективный элемент защиты электродвигателей и другого электрооборудования, который выгодно отличается от входного автоматического выключателя тем, что не подвержен ложным срабатываниям при кратковременных скачках тока.

Особенности подключения теплового реле

Между магнитным пускателем и электрическим двигателем располагается тепловое реле. Его подключение осуществляется к выходу магнитного пускателя. Через данное приспособление осуществляется прохождение электрического тока. Тепловое реле характеризуется наличием дополнительных контактов. Их необходимо соединить последовательно с катушкой пускателя.

Тепловое реле характеризуется наличием специальных нагревателей, через которые может проходить электрический ток определенной величины. При возникновении опасных ситуаций (возрастание тока выше указанных пределов), благодаря наличию биметаллических контактов, производится разрыв цепи и впоследствии отключения пускателя. Для того чтобы запустить работу механизма, необходимо включить биметаллические контакты с помощью кнопки.

Подключение электромагнитного пускателя и теплового реле производится достаточно просто. Для этого необходимо всего лишь придерживаться схемы.

Магнитный пускатель с тепловым реле и кнопками управления, схема, принцип действия

puskat 1Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки.

У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Орлов Анатолий Владимирович

pusk 4

Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Орлов Анатолий Владимирович

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

puskat 2

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

220 V

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже). Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Читайте так же:
Автоматический выключатель без теплового расцепителя abb

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Орлов Анатолий Владимирович

Схема управления пускателем на 380 В

380 V

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

tepl rele

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Орлов Анатолий Владимирович

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector