Azotirovanie.ru

Инженерные системы и решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрический ток и его использование

Электрический ток и его использование

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Электрический ток и его использование»

Сейчас можно с уверенностью сказать, что самым главным достижением человечества является открытие электрического тока и его использование.

Электрическая энергия имеет огромное значение, как в жизни каждого отдельно взятого человека, так и в развитии современного общества в целом.

На сегодняшний день сложно представить нашу жизнь без электричества. Ведь именно оно освещает наше жильё и улицы, приводит в движение трамваи, троллейбусы и поезда.

Да, и все бытовые приборы, которыми мы пользуемся дома, работают при помощи электрической энергии.

Работа современных средств связи, без которых мы не представляем свою жизнь — телефона, радио, телевидения, интернета — также основана на использовании электрической энергии.

Электроэнергия поселилась во всех сферах деятельности человека. Без электричества не могут обойтись ни промышленность, ни сельское хозяйство, ни даже наука.

Без него невозможно было бы развитие кибернетики, вычислительной и космической техники.

Но, важно понимать, что электрическая энергия, которую мы используем, не существует в природе в готовом для потребления виде. Её нельзя добыть, как полезное ископаемое – нефть или уголь.

Так откуда же она берётся?

Чтобы любая энергия стала полезной человеку, он должен был научиться с ней обращаться, это значит, должен был научиться преобразовывать одни виды энергии в другие.

Человечество справилось с этой нелёгкой задачей. Люди стали получать электрическую энергию, которая так необходима для производственных и бытовых нужд, из других видов энергии: механической, тепловой, световой, химической.

Преобразования энергии различных видов в электрическую энергию происходят на электростанциях. Устройство, которое преобразует какую-либо энергию в электрическую, называют источником.

Основную часть электрической энергии люди получают преобразованием механической энергии при помощи специальных электромеханических машин.

Эти машины называются – электрогенераторы. В электрогенераторе механическая энергия турбины преобразуется в электрическую энергию. Турбина – это такое вращающееся колесо специальной конструкции. Так, например, на гидроэлектростанциях турбина вращается за счёт энергии падающей воды.

На тепловых электростанциях турбина вращается с помощью энергии движения пара.

А на ветряных электростанциях – за счёт энергии ветра.

На космических станциях источником электрической энергии являются фотоэлементы. Именно они преобразуют солнечную энергию в электрическую.

Помимо стационарных источников существуют переносные источники электрической энергии. Это гальванические элементы, различные аккумуляторы, а также батареи из них.

В переносных источниках электрическая энергия получается за счёт химического процесса взаимодействия разнородных металлов с особым веществом – электролитом. Существуют ещё и малогабаритные механические генераторы, которые работают за счёт мускульной силы рук или ног человека. Примером малогабаритного механического генератора может послужить генератор для велосипедной фары.

Давайте попробуем разобраться, как же происходит процесс передачи электрической энергии.

Вообще, первые сведения об электричестве появились много столетий назад и относились они тогда к электрическим зарядам, которые получались посредством трения. Ещё в Древней Греции было установлено, что если янтарь натереть шерстяной тканью, то он приобретёт способность притягивать лёгкие предметы.

Кстати, по-гречески слово «янтарь» звучит как «электрон». От этого слова и произошёл термин «электричество». Затем люди выяснили, что точно такими же свойствами обладают и многие другие вещества. Тогда такие вещества были названы наэлектризованными. Сейчас же мы говорим, что на телах в таком состоянии имеются электрические заряды, а сами же тела называем заряженными.

Читайте так же:
Мощность по току теплого пола

Итак, электрическая энергия передаётся при помощи потока мельчайших заряженных частиц.

Эти заряженные частицы всегда возникают при тесном контакте различных веществ. В некоторых телах электрические заряды могут свободно перемещаться между различными частями, в других же это невозможно. В первом случае вещества называют проводниками, во втором – диэлектриками или изоляторами.

Проводниками являются все металлы, растворы солей, кислот, включая обычную питьевую воду.

Примерами изоляторов могут служить стекло, резина, различные пластмассы.

Следует знать, что деление веществ на проводники и диэлектрики весьма условно. Так как все вещества в большей или меньшей степени проводят электричество.

В природе различают два вида электрических зарядов. Условно их называют положительными и отрицательными.

Вокруг каждого из этих зарядов существует электрическое поле, за счёт которого одноимённые заряды отталкиваются друг от друга, а разноимённые притягиваются друг к другу. В случае взаимодействия различных веществ разноимённые заряды будут стремиться перейти из одного вещества в другое. Перемещение этих заряженных частиц и будет представлять собой электрический ток.

Вообще, электрическим током называется упорядоченное (направленное) движение заряженных частиц под действием электрического поля.

Исторически за направление электрического тока было принято движение положительных зарядов, которые перемещаются от положительного полюса источника к отрицательному по проводнику, подключённому к полюсам.

Количество зарядов, прошедших за единицу времени через поперечное сечение проводника, называется силой тока.

Выражается эта зависимость следующей формулой: , где – сила тока, – количество зарядов, – время.

Единицу силы тока называют ампером, в честь французского учёного Андре Ампера.

Электропитание всех электрических устройств осуществляется постоянным и переменным током. Электрический ток, направление и значение которого не меняются со временем, называют постоянным. А электрический ток, направление и значение которого способны периодически изменяться, называют переменным.

Электропитание большинства электротехнических устройств осуществляется переменным током.

А теперь давайте рассмотрим особенности протекания электрического тока в различных средах и его применение.

Итак, при рассмотрении вопроса протекания электрического тока надо учитывать наличие различных носителей тока – элементарных зарядов – характерных для данного физического состояния вещества. Само по себе вещество может быть твёрдым, жидким или газообразным.

В металлических проводниках ток образуется за счёт движения электронов, имеющих отрицательный заряд. Вообще, все металлы являются проводниками тока. Применение тока в металлах используется для передачи электроэнергии на расстояние.

Из жидкостей электрический ток проводят только электролиты – растворы солей, кислот и щелочей. Прохождение постоянного электрического тока через жидкие среды сопровождается химическими реакциями. Это свойство широко применяют в аккумуляторах, в электрометаллургии для получения алюминия и бокситов, а также при электрохимической обработке материалов и очистке металлов от примесей.

Электрический ток в газовой среде вызывает свечение газа. На основе этого явления работают лампы дневного света, лазеры, прожекторы.

Устройства, которые преобразуют электрическую энергию в другие виды энергии – свет, тепло, механическую и химическую энергию, – называют приёмниками или потребителями электрической энергии, а в электротехнике – нагрузкой.

Для того чтобы электрическое устройство (или нагрузка) работало, его нужно соединить с полюсами источника тока. На практике источник с нагрузкой часто соединяют с помощью дополнительных проводников, в быту и электротехнике их называют проводами.

То, о чём мы сейчас с вами говорили: источник электрической энергии, нагрузка и соединительные провода – всё вместе это называется электрической цепью.

Итоги урока

На этом уроке мы говорили об электрическом токе и его использовании. Рассмотрели различные источники электроэнергии. Разобрались, как происходит процесс передачи электрической энергии. А также рассмотрели особенности протекания электрического тока в различных средах и его применение.

Читайте так же:
Действие тепловой электро ток

Примепы использования теплового действия тока в быту?

Примепы использования теплового действия тока в быту.

Электрочайник, электроплита, обогреватель, кипятильник, бойлер, кроче всё, что греет.

Все вы видели высоковольтные линии электропередач?

Все вы видели высоковольтные линии электропередач.

Расскажите какой ток там используется и почему, сколько там напряжение и зачем оно такое.

Как делают из этого тока потом ток подходящий для использования в быту.

18. Какое ( — ие) из действий тока всегда сопровождает ( — ют) его протекание?

18. Какое ( — ие) из действий тока всегда сопровождает ( — ют) его протекание?

А. Только тепловое Б.

Только магнитное В.

Только химическое Г.

Тепловое и магнитное.

Где используют тепловое и химическое действия тока?

Где используют тепловое и химическое действия тока.

Какие действия электрического тока позволяют судить о том если ли в цепи ток?

Какие действия электрического тока позволяют судить о том если ли в цепи ток?

Магнитное и тепловое Химическое и магнитное Любое из этих действия.

Возможно ли прохождение электрического тока в среде не сопровождается тепловым действием и почему?

Возможно ли прохождение электрического тока в среде не сопровождается тепловым действием и почему?

Какое действие электрического тока лежит в основе определения единицы силы тока?

Какое действие электрического тока лежит в основе определения единицы силы тока?

Тепловое Химическое Магнитное Ни одно из названных действий.

Как можно наблюдать на опыте тепловое действие тока?

Как можно наблюдать на опыте тепловое действие тока.

Приведите примеры использования магниьного действия тока?

Приведите примеры использования магниьного действия тока.

Приведите примеры использования тепловых действий тока?

Приведите примеры использования тепловых действий тока.

Назовите электрические устройства , работа которых основана на тепловом действии тока?

Назовите электрические устройства , работа которых основана на тепловом действии тока.

Вы находитесь на странице вопроса Примепы использования теплового действия тока в быту? из категории Физика. Уровень сложности вопроса рассчитан на учащихся 5 — 9 классов. На странице можно узнать правильный ответ, сверить его со своим вариантом и обсудить возможные версии с другими пользователями сайта посредством обратной связи. Если ответ вызывает сомнения или покажется вам неполным, для проверки найдите ответы на аналогичные вопросы по теме в этой же категории, или создайте новый вопрос, используя ключевые слова: введите вопрос в поисковую строку, нажав кнопку в верхней части страницы.

V = 1. 5 * 10 ^ 6 Гц C = 400 * 10 ^ — 12 Ф L = ? = = = v = 1 / T T = 2 * π * √(L * C) L = 1 / ((2 * π * v)² * C) = 1 / ((2 * 3. 14 * 1. 5 * 10 ^ 6)² * 400 * 10 ^ — 12)≈2. 82 * 10 ^ — 5 Гн = = = = = = = = = = = = = = = = = = = = = = = = = = = = =..

L(длинна) = 20м p(уд. Сопрот) = 1, 1 Ом·мм² / м s(сечение) = 0, 1мм² R = p * (l / s) = 1, 1 * (20 / 0, 1) = 220 Ом. U = I * R = 1, 6 * 220 = 352 B P = U * I = 352 * 1, 6 = 563, 2 Bт (ток при соединении плиток не изменится) (сопротивление увеличится..

Правило правой рукиЕсли расположить большой палец правой руки по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направлениелиний магнитной индукции.

P = W / t (W — работа эл. Тока) t = 120c W = P * t = U * I * t = 6 * 0. 6 * 120 = 432Дж.

Электрический ток: польза и опасность

Электрический ток

Что такое электрический ток знает каждый старшеклассник. Более того, современную жизнь просто невозможно представить без использования электрической энергии. Электрический ток дарит нам и свет (электрические лампы), и тепло (электронагревательные приборы). В своей жизни мы используем самые разные электротехнические устройства, которые делают ее комфортнее (телевизор, радиоприёмник, телефон, стиральная машина, пылесос и так далее). Промышленность просто перестала бы существовать, если бы не было электричества. Однако, при всей той пользе, которую несет в себе использование электрического тока, он вместе с тем содержит в себе и опасность. Давайте попробуем разобраться, что нужно учитывать, чтобы это использование было безопасным.

Читайте так же:
Номинальный ток теплового реле для защиты электродвигателей

Сначала следует отметить, что электрический ток может оказать на человеческий организм негативное воздействие:

Механическое: электрический ток приводит к сильному и резкому сокращению мышц вплоть до их разрыва.

Термическое: температурный нагрев тканей организма (ожог) вызывает функциональное расстройство органов.

Электролитическое: физико-химические процессы электролиза, происходящие под действием электрического тока в живых тканях, приводят к нарушению баланса.

Световое: вспышки света и ультрафиолетовое излучение, созданное электрическим током приводят к негативному воздействию на глаза.

Биологическое: действие электрического тока может привести к раздражению и перевозбуждению нервной системы человека.

Электрический ток в проводнике описывается законом Ома для участка цепи:

Закон Ома

где I – сила тока в проводнике, измеряемая в амперах (А), U – электрическое напряжение на концах проводника, измеряемое в вольтах (В), R – электрическое сопротивление проводника, измеряемое в омах (Ом).

Действие электрического тока на организм человека в первую очередь определяется силой тока. Переменный электрический ток частоты 50 Гц, используемый для работы бытовой техники, является смертельно опасным, если сила тока равна или больше, чем 0,1А. К потере сознания приводят токи силой 0,05–0,1 А. Токи силой менее 0,05 А считаются сравнительно неопасными и приводят лишь покалыванию и к неприятным ощущениям в организме. Однако, даже при небольших токах силой 0,005–0,02 А мышцы теряют способность самопроизвольно сокращаться, и человек может оказаться долгое время под воздействием электрического тока, что не безопасно.

Действие электрического тока на человека

Согласно закону Ома сила тока обратно пропорциональна электрическому сопротивлению, которое может быть различным. Если кожа человека сухая и огрубевшая сопротивление равно примерно 100000–200000 Ом. Если кожа влажная и тонкая, то – 30000–50000 Ом. Самая неблагоприятная ситуация будет, если человек стоит на хорошо проводящей поверхности, в этом случае сопротивление уменьшается до 10000–20000 Ом. В условиях повышенной влажности сопротивление может быть очень небольшим: 1000–2000 Ом.

Котроткое замыкание

Таким образом, если человеческий организм оказался под воздействием бытового напряжения 220 В, то в самом неблагоприятном случае при сопротивлении в 1000 Ом, согласно закону Ома, сила тока будет 0,22 А. Такая сила тока может привести к параличу дыхания. В самом лучшем случае при сопротивлении в 200000 Ом сила тока будет 0,0011 А. Действие такого тока приведет лишь к неприятным ощущениям.

Поэтому никогда не нужно касаться оголенных проводов или неисправных электроприборов, если нет абсолютной уверенности в том, что они не находятся под напряжением. Особенно опасно прикосновение двумя руками, так как в этом случае электрический ток пройдет через область сердца.

По предложенному методу мы предлагаем вам решить задачу:

Определите, силу тока через резиновые перчатки толщиной 1мм, если площадь соприкосновения с электрическим проводом, находящимся под напряжением 220В, равна 1мм 2 .Удельное сопротивление резины 10 13 Омм.

Применение электричества

Применение электричества

Возможно ли представить современную жизнь без электричества? Нет электричества – и остановились все фабрики и заводы, выключились компьютеры в офисах, погас свет в магазинах и домах. Применение электричества сегодня настолько широко, что мы порой даже не замечаем его и не задумываемся, какой бы была наша жизнь без этого чудесного явления.

Читайте так же:
Количество теплоты для проводника с током формула

Первое применение электричества

Интерес к такому явлению, как электричество сопровождал жизнь людей с самых древних времен. Первым его исследователем стал древнегреческий философ Фалес. Еще в VII в. до н.э. он обратил внимание, что если потереть янтарь кусочком шерсти, то янтарь начинает притягивать к себе ткань. Не случайно электричество и получило свое название от древнегреческого слова «электрон», что в переводе означает «янтарь». Однако долгое время полезное свойство, обнаруженное Фалесом, никак не использовалось (хотя, например, Аристотель исследовал электрические свойства угрей, которые им использовались против своих врагов).

Лишь в 17 веке появился и термин «электричество» и первые серьезные исследования в этой области. Термин ввел английский ученый Уильям Гилберт в своей книге «О магните, магнитных телах и большом магните – Земле», который в результате опытов выявил, что электризоваться может не только янтарь, но и другие предметы. Уильям ГилбертВ этот же период Отто фон Герике была создана первая электростатическая машина. Она представляла собой серный шар на металлическом стержне и могла не только притягивать, но и отталкивать предметы. Но еще очень долго электричество не приносило никакой практической пользы, хотя это явление будоражило умы многих ученых и активно изучалось ими. 18-19 века прошло под знаком активного исследования явления элекричества, были выявлены его многие полезные свойства. В частности, возможность передачи электрической энергии на некоторые расстояния, наличие тока в молнии и мышцах животных.

Отто фон Герике

Конец 18- начало 19 веков ознаменовано изучением практической ценности электричества. В частности, ученый Вольта создает источник постоянного тока, который носит название гальванического элемента. В числе титулованных ученых, занимавшихся изучением электричества, нельзя не упомянуть Майкла Фарадея, который основал учение об электромагнитных полях, ввел многие термины и законы. ФарадейИменно он стал создателем самого первого генератора электроэнергии, что стало основополагающим открытием в последующем развитии и распространении электричества. Ему же принадлежит честь создания первого электродвигателя, что сделало электричество уже не абстрактной научной субстанцией, а изобретением, полезным на практике.

Область применения электричества

Сказать, что сегодня область применения электричества широка – это не сказать практически ничего. Пожалуй, сложно найти сферу, где электричество е применялось бы.

Конечно, самый очевидный и общедоступный способ применения электроэнергии, о котором знает даже ребенок, — это освещение. Эта система освещения получила свое распространение с изобретением ламп накаливания русским электротехником А.Н. Лодыгиным во второй половине XIX века. Первые лампы состояли из закрытого сосуда без кислорода и со стержнем из угля внутри. Замена свечного освещения на электрическое существенно повысило пожарную безопасность.

Сфера применения электричества не ограничивается освещением. Оно также широко применяется для передачи информации. Такие устройства, как телефоны, телеграф, радио и телевидение не смогли бы работать без электричества.

Все мы с детства знаем виды транспорта, работающие на электроэнергии – это трамваи, троллейбусы, поезда, в том числе и в метро. Из-за роста цен на бензин все большее распространение получается и частный электротранспорт, например, на Западе уже достаточно широко используются электромобили.

Электричество достаточно широко применяется в сфере отопления или охлаждения. Надо отметить, что электрическое отопление является достаточно дорогим и ресурсозатратным, поэтому в некоторых странах оно запрещено к применению. А вот системы конидиционирования воздуха, работающие с применением электроэнергии, используются практически повсеместно.

Работа бытовой и офисной техники также невозможна без электричества – это утюги, стиральные и посудомоечные машины, электроплиты, принтеры, сканеры и многое другое. Не смогут работать без электроэнергии и компьютеры и планшеты, без которых сложно представить современную жизнь. Ведь приходя домой вечером, мы обязательно ставим свой телефон или планшет на зарядку, которая происходит от электрической розетки.

Читайте так же:
Ток теплового расцепителя формула

Электроэнергия широко применяется для таких процессов, как производство и обработка материалов (без электричества не работали бы аппараты для сварки, сверления, резки).

Еще одной сферой, где сегодня достаточно широко применяется электричество, является медицина. Многие обследования и процедуры были бы невозможны без него (электрофорез, электрокардиограмма и многие другие).

Электростанция

Очень важным вопросом сегодня является генерация электроэнергии. Для этого создаются электростанции.Все большее распространение получают электростанции, работающие за счет природных явлений – солнца, ветра, приливов.

Благодаря существованию линий электропередач (ЛЭП) электроэнергию возможно передавать на очень большие расстояния. Это позволяет электрифицировать даже самые отдаленные уголки (хотя, стоит отметить, что по информации Всемирного банка, существует большое число стран, где электроэнергия практически не используется, больше миллиарда людей на Земле не пользуются электричеством. Но как правило, это представители достаточно отсталых стран, например, в Африке).

Для хранения электроэнергии применяются всем нам знакомые аккумуляторы и батареи. Сегодня их можно приобрести практически в любом магазине, в любой точке планеты.

В чем проявляется магнитное действие электрического тока? Объясняем

Люди на протяжении всей известной истории знали о распространённых электрических и магнитных явлениях, порой преподнося их как магию, божественные силы. Ещё древние греки и египтяне знали о взаимодействии железа с магнитами, электризации волос при расчесывании. Разберёмся, в чем проявляется магнитное действие электрического тока, когда его начали изучать, где используется.

В чем заключается магнитное действие тока

Молния – сильный электрический разряд, обладающий магнитными свойствами, что Христиану Эрстеду удалось обнаружить на практике в 1820 году. После он установил: магнитная стрелка, установленная параллельно проводнику, поворачивается перпендикулярно ему при замыкании цепи. Опыт показал наличие вращающих стрелку сил вокруг любого проводника, которые называются магнитными.

Молния – сильный электрический разряд, обладающий магнитными свойствами, что Христиану Эрстеду удалось обнаружить на практике в 1820 году. После он установил: магнитная стрелка, установленная параллельно проводнику, поворачивается перпендикулярно ему при замыкании цепи. Опыт показал наличие вращающих стрелку сил вокруг любого проводника, которые называются магнитными.

Магнитное поле обязательно сопровождает всякое электрическое явление. Оно возникает везде, где есть электрический ток независимо от материала и габаритов проводника. Определяется силой и направлением тока. В технике (механике) электричество нашло применение благодаря магнитному полю. Рассмотрим, где и как оно используется человеком.

Магнитное действие электрического тока: примеры

В технологических процессах и быту магнитные свойства тока применяются в десятках случаев:

  • Сепараторные цели – очистка веществ, например, пищи, от металлических вкраплений. Магниты удаляют из сыпучих материалов металлы: сталь, железо, чугун, их сплавы.
  • Устройства для разделения заряженных частичек.
  • Намагничивание жидкостей, водных растворов.
  • Краны для погрузки, разгрузки, сортировки металлов. Через сильный электромагнит по команде оператора пропускается электрический ток, который включает/отключает магнитное поле, притягивая или отпуская металлолом в нужные моменты.
  • Управление микроорганизмами посредством воздействия на них полевыми образованиями.
  • Электродвигатели – принцип работы основан на электромагнитной индукции – превращение электрической энергии в механическую.
  • Генератор – устройство для преобразования энергии из одного вида в другой.
  • Магнитные пластины, фиксирующие обрабатываемые на шлифовальных станках заготовки.
  • Транспорт – магнитные запоры, датчики.
  • Медицина: магнитно-резонансные томографы.
  • Исполнительные устройства: переключатели, выключатели, задвижки.
  • Компьютерная техника: жёсткие диски, динамики.

Магнитное поле Земли, о котором писал ещё Гилберт, чувствуют и используют животные. По нему ориентируются птицы при перелётах и прочие животные во время миграций.

Магнитное поле Земли, о котором писал ещё Гилберт, чувствуют и используют животные. По нему ориентируются птицы при перелётах и прочие животные во время миграций.

Приведите примеры магнитного действия тока, с которыми сталкивались сами.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector