Azotirovanie.ru

Инженерные системы и решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

5. Формирователи пачки заданного числа импульсов

5. Формирователи пачки заданного числа импульсов

Для устройств автоматики, дистанционного управления или проверки работы отдельных узлов схемы иногда требуется передавать пачку из определенного числа импульсов Простейшие схемы таких формирователей показаны на рис. 1.43. В них последний импульс пачки может получиться укороченным, если сигнал управления имеет произвольную длительность.

Часто в схемах управления необходимо использовать генераторы, в которых независимо от положения фронтов управляющих сигналов обеспечивается неискаженное (по длительности) формирование первого и последнего
импульсов на выходе. Причем начало первого импульса должно совпадать с началом управляющего сигнала.

Packet144.jpg

Рис. 1.43. Простейшие схемы формирования пачки импульсов

Два варианта таких генераторов показаны на рис. 1.44 и рис. 1.45. Если входной запускающий импульс меньше по длительности периода колебаний, на выходах формируется один импульс. При большей длительности правляющего
сигнала на выходе будет пачка, показанная на диаграмме. Таким же свойством обладает схема формирователя импульсов, рис. 1.45.

Электрическая схема, рис. 1.46, формирует от 1 до 7 импульсов в пачке с последующим повторением цикла через время 16Т, пока нажата кнопка. В процессе работы счетчика-дешифратора DD2 на его выходах появляются импульсы, которые управляют переключением триггера DD3.2. Таким образом задается интервал, в течение которого на выходе DD3/12 будет лог. «1», что разрешает прохождение импульсов от автогенератора (DD1.1, DD1.2) через элемент DD1.3 на выход. Второй триггер DD3.1 включен по схеме делителя и обеспечивает появление интервала между пачками.

Количество импульсов в пачке соответствует номеру нажатой кнопки. Поформуле T=1,32R1C1 определяется период формируемых импульсов. При этом R1 может иметь номинал от 20 кОм до 10 МОм. Заменой микросхемы DD2 на
561 ИЕ8 количество импульсов в пачке может быть увеличено до 9.

Packet145.jpg

Рис. 1.44. Управляемый генератор с неискаженной длительностью последнего
формируемого импульса

Packet146.jpg

Рис. 1.45. Вариант управляемого генератора с неискаженной длительностью
последнего формируемого импульса

Packet147.jpg

Рис. 1.46. Формирователь пачки до 7-ми импульсов

Схема, приведенная на рис 1.47, обеспечивает при нажатии кнопки однократное формирование пачки до 15 импульсов (на схеме показаны только 10 кнопок). Для повторной выдачи пачки необходимо повторно нажать на соответствующую кнопку. При этом происходит запись соответствующего числа в двоичном коде в регистр предварительной установки счетчика DD2, и он начинает считать на вычитание до момента времени, пока на всех его выходах не установится лог. «0». Логический «0» установится и на выходе DD1.4.

Packet148.jpg

Рис. 1.47 Формирователь пачки импульсов

Номиналы элементов (R2, С1) на схеме указаны для частоты генератора 10 Гц (частота набора номера в телефонной линии). На схеме показан также пример дешифратора десятичных чисел в двоичный код на диодах типа Д9 (Д2)
однако для уменьшения габаритов вместо них удобнее использовать две диодные матрицы типа КДС627А.

Воспользовавшись принципом работы данной схемы, можно выполнить формирователь пачки с любым количеством импульсов Для этого последовательно со счетчиком DD2 можно включить еще такие же счетчики, а вместо ди-
одов VD1. VD13 применить тумблеры для начальной установки необходимого числа импульсов (в двоичном коде) Для запуска работы формирователя необходимо подать кратковременный положительный импульс на входы
DD2/1. DDn/1 — при этом происходит запись установленного кода.

Packet149.jpg

Рис. 1.48. а) Формирователь кодовой последовательности, б) форма импульсов

Иногда требуется иметь пачки импульсов, состоящие из произвольной комбинации положения импульсов относительно начального, — кодовую после довательность. Такой режим обеспечивает схема, рис. 1.48а. Если ни одна из кнопок не нажата, то на выходе (DD1/11) будут появляться одинарные импульсы, с периодом, определяемым частотой задающего генератора на элементах DD1.1, DD1.2.

В зависимости от того, какая кнопка нажата, на выходе появится пачка из комбинации импульсов. Причем каждой нажатой кнопке будет соответство

Packet150.jpg

Рис. 1.48. в) Дешифратор кодовой последовательности

вать определенное положение импульса относительно начального. Эпюры выходного напряжения, рис. 1.48в, поясняют работу схемы.

Кнопки могут быть нажаты в любой комбинации или все одновременно. Что позволяет использовать схему в устройствах, где требуется для дистанционного управления одновременная передача нескольких команд.

Вариант схемы дешифратора кодовой последовательности показан на рис. 1.48в. При обработке входных пачек импульсов на соответствующих выходах мультиплексора DD4 будут кратковременно появляться импульсы, а для
фиксации принятой команды можно воспользоваться любыми триггерами.

Читайте так же:
Норматив потребления хвс без счетчика с 2017

Счетчик импульсов: основные задачи в промышленности

Счетчик импульсов является современным модулем, который применяют при управлении автоматической линией, различными приборами и станками. Как следует из названия аппарата, счетчик импульсов необходим при прямом, обратном и реверсивном счете импульсов, при соединении или разъединении цепи, когда достигается необходимое число импульсов.
Конструкция таких счетчиков позволяет их установку на передней панели шкафов управления.
Существуют разнообразные счетчики импульсов. Их следует классифицировать по следующим параметрам:
— по напряжению входящих сигналов;
— по напряжению в сети;
— по быстродействию;
— по разрядности;
— по управлению счетом;
— по количеству элементов, находящихся в одном корпусе;
— по функции выхода и другим характеристикам.
Питание счетчика напрямую зависит от его вида и может осуществляться в следующем диапазоне, в зависимости от модели счетчика импульсов:
— от 18В до 36В;
— от 85В до 240В.

Принцип работы счетчиков импульсов, независимо от модели и функционального предназначения имеет одинаковый алгоритм. Первым действием задается уставка счетчика, которую можно наблюдать на индикаторе, расположенном на передней панели. При осуществлении подачи внешней импульсивности на «вход», параметр «счет» увеличивает или уменьшает свое значение на единичный параметр. В таком случае, на табло индикатора выводится уже сосчитанное значение. Процесс сбрасывания встроенного реле с последующим переключением его контактов, происходит при условии совпадения заданного и сосчитанного счетчиком значений. Каждый счётчик импульсов предусматривает возможность строгого контроля над его параметрами либо же работу в автоматическом режиме.

Процесс обратного переключения реле и обнуление значений счетчика происходит при условии подачи сигнала на вход «сброс». Реверсивные и обратные счетчики имеют настройки на осуществление обратного отсчета от заданного значения до нуля. Существуют виды счетчиков, на которых не предусмотрен отдельный вход для сброса. В таких моделях наблюдается процесс автоматического сбрасывания при условии совпадения сосчитанного и заданного значений.

Существуют счетчики, которые представляют комбинированную модель. Они рассчитаны на любой вид учёта: как на прямой, так и на обратный. Фазировка входных импульсов используется для определения направления счета. Это способствует расширению области применения таких счетчиков импульсов. Например, счётчик импульсов подобного функционала нашёл широкое применение в разнообразных намоточных станках, где нужно просчитывать количество витков.

Процесс задавания значения происходит в следующем порядке: при нажатии на кнопку «просмотр» счетчик импульсов переходит в режим ввода или вывода из уставки, при этом начинает мигать младший ее параметр. При нажатии на кнопку «выбор» любой разряд уставки подлежит изменению. Он также выделяется миганием. При помощи кнопки «уставка» возможно осуществить выбор требуемого значения из существующих разрядов уставки.

Разработка универсального счетчика импульсов

В производстве и на конвейерных линиях часто возникает задача подсчета продукции или операций оборудования. Во многих случаях станки уже имеют комплекс аппаратных и программных средств, позволяющих получить данную информацию. Также существуют специализированные счетчики, адаптированные под конкретную задачу или оборудование. Но при наличии разнотипного оборудования затраты на программное сопряжение становятся существенными. Хотелось бы иметь простой универсальный счетчик, который легко адаптируется под разные задачи и передает события на сервер для дальнейшей аналитики. Об опыте разработке такого счетчика и пойдет речь в данной статье.

Оптические датчики и их особенности

Чаще всего при подсчете продукции или отслеживании механического перемещения внешним датчиком используются оптические датчики барьерного, рефлекторного или диффузионного типа.

Рисунок 1. Типы датчиков (И - источник, П - приемник, О - объект).

Рисунок 1. Типы датчиков (И — источник, П — приемник, О — объект).

Принцип работы барьерного датчика очень простой — имеются разнесенные в пространстве источник света и приемник, между ними проходят объекты, тем самым закрывая источник света от приемника. Полученный сигнал с фотоприемника коррелирует с прохождением объекта и практически не требует обработки. Однако системы с таким датчиком не лишены недостатков — обычно это несколько модулей, требуется прокладка кабелей и юстировка оптической системы. В случае рефлекторного и диффузионного типа датчиков установка проще, так как источник и приемник находятся в одном корпусе. Рефлекторный датчик принимает отраженный от объекта или специальной отражающей метки свет, а диффузионный — рассеянный, учитывая при этом его интенсивность. Но для датчиков этих типов полученный сигнал требует дальнейшей обработки. Вне зависимости от выбранного типа датчика, для счета обычно используется независимый микрокомпьютерный или микропроцессорный блок как отдельное устройство.

Читайте так же:
Как быть с 2 х тарифным счетчиком
Первый прототип датчика

Так как нам хотелось бы иметь устройство в едином корпусе, максимально адаптируемое под разные задачи, было решено: во-первых, использовать датчик работающий на отражение, во-вторых, реализовать блок подсчета на встроенном компьютере.

За отправную точку было решено взять аналоговую часть универсального тахометра, который работает на отраженном свете. В этом случае на движущийся механизм (например, вал) крепится яркая светоотражающая метка, наводится луч света, и прибор показывает частоту вращения. Источником света может выступать как лазер, так и обычный светодиод. В первом прототипе нашего счетчика импульсов за источник света был взят светодиод, использовалась линза с фокусным расстоянием 35 мм. На одном операционном усилителе был собран компаратор, на другом буферный элемент. Также была собрана цепочка, обеспечивающая плавающий порог срабатывания компаратора.

Рисунок 2. Первый прототип датчика - принципиальная схема.

Рисунок 2. Первый прототип датчика — принципиальная схема.

Испытания показали работоспособность в диапазоне 10-30 см с очень контрастными метками (использовали световозвращающий скотч). Но такой результат нас еще не устраивает, так так датчик на просвет работает на значительно больших расстояниях. Также система оказалась чувствительна к включению/выключению освещения в помещении, и при использовании подобного подхода от этого недостатка избавиться не получится.

Второй прототип датчика

В следующей версии для улучшения чувствительности и расстояния срабатывания датчика добавили гистерезис, настраиваемый с помощью подстроечного резистора. Остальные элементы были подобраны эмпирически в предыдущих опытах.

Рисунок 3. Второй прототип датчика - принципиальная схема.

Рисунок 3. Второй прототип датчика — принципиальная схема.

Второй прототип работал лучше предыдущего — увеличилось расстояние срабатывания и снизились требования к отражающим характеристикам меток. Однако все еще имеется ряд проблем. Во-первых, на низкой скорости движения объектов был замечен пропуск импульсов. Это связано с тем, что схема плавающего порога успевала подстроиться под изменения. Во-вторых, при глянцевой поверхности объекта счетчик давал много ложных срабатываний, так как не хватало гистерезиса. Но поднимать гистерезис бесконечно нельзя, система просто перестанет реагировать на обычные метки. И в-третьих, что самое печальное, в некоторых случаях счетчик ловил пульсацию бюджетного освещения в производственных помещениях.

Третий прототип датчика

В результате проведенных опытов стало понятно, что нельзя обойтись без дополнительной настройки системы, которую можно осуществить только с помощью микроконтроллера. Также для исключения влияния помех от фонового освещения решили добавить модуляцию опорного сигнала и преобразование Фурье на приемнике. Корпус уже был разработан и изготовлен на предыдущих этапах, и нам хотелось вписаться в его габариты. Так выбор пал на практически единственный вариант — STM32G030J6M6 Cortex — M0+ c ADC 2.5Msps в корпусе SOIC-8. Отличное решение для непрерывной обработки данных от АЦП. Общение с микроконтроллером осуществляется по шине I2C.

Рисунок 4. Третий прототип датчика - принципиальная схема.

Рисунок 4. Третий прототип датчика — принципиальная схема.

На операционном усилителе собран трансимпедансный усилитель тока фотодиода. Лазер модулируется дискретным сигналом от таймера, потому что в данном случае нет необходимости получать чистый синус. Для совместимости с предыдущими решениями был сделан дискретный вывод для использования аппаратного счетчика событий (1й пин разъема P1), а конфигурация осуществляется один раз при старте системы. Таким образом, сохраняется полная преемственность с уже написанным ПО.

В микроконтроллере реализованы генерация сигнала ШИМ, обработка оцифрованных данных и общение по I2C. За генерацию ШИМ отвечает таймер, синхронизированный с АЦП. Данные передаются в память по DMA и обрабатываются по половинам — пока заполняется первая половина буфера, вторая анализируется. Сам алгоритм обработки данных получится следующий:

Рисунок 5. Алгоритм обработки данных

Рисунок 5. Алгоритм обработки данных

Микрокомпьютер

С оптическим датчиком разобрались, теперь вернемся к самому устройству. Помимо датчика, нам также нужно реализовать подсчет импульсов и отправку данных на сервер для дальнейшей аналитики. Со всем этим справится одноплатный компьютер. Основные требования к нему следующие:

возможность запускать программу на Python 3,

место для пары сетевых библиотек,

интерфейсы Ethernet и Wi-Fi для связи с сервером,

питание по micro USB или PoE,

производительность — не критично,

время включения — не более 2 минут,

хранилище данных не требуется, так как мы хотим передавать их на сервер, и буфера в оперативной памяти будет достаточно.

Читайте так же:
Обнулить счетчик масла bmw

Сначала мы использовали Orange Pi zero, однако, учитывая их немалые габариты и невозможность нормально сделать PoE, решено было поискать другие варианты. Так взгляд пал на одноплатный компьютер VoCore, характеристики которого полностью подходили под задачу. Изучив предложения на китайском рынке, был найден очень похожий вариант выпускаемый массово — процессор RT5350, 32Mb RAM, 8/16Mb Flash.

Рисунок 6. Одноплатный компьютер VoCore.

Рисунок 6. Одноплатный компьютер VoCore.

Он немного больше, чем оригинальный VoCore, зато под модулем остается место для размещения компонентов, а также у модуля есть удобный разъем для подключения к основной плате. Схематика незначительно отличается от оригинального VoCore, так что конфигурацию от VoCore можно легко адаптировать под китайского товарища.

Конструктив

Рисунок 7. 3Д модель счетчика.

Рисунок 7. 3Д модель счетчика.

Для удобство калибровки системы было решено дать одну степень свободы оптическому датчику, разместив его в отдельной поворотной голове.

Рисунок 8. Поворотная часть корпуса.

Рисунок 8. Поворотная часть корпуса.

От люфта и случайного поворота защищает пружина и фрикционная шайба. Для большинства задач этого оказывалось достаточно. Материнская плата, модуль PoE и сам компьютер расположены максимально компактно в основной части корпуса.

Рисунок 9. Основная часть корпуса.

Рисунок 9. Основная часть корпуса.

Так как партии пока относительно небольшие корпус изготавливается методом SLS печати.

Итак, в итоге у нас получилась следующая архитектура устройства:

вычислительный модуль (одноплатный компьютер),

основная плата, на которой расположены разъемы Ethernet, USB, I2C, светодиоды и кнопка,

плата питания (устройство может питаться как от microUSB так и от PoE).

Подсчет срабатываний

Теперь пара слов о том, как реализован подсчет срабатываний датчика. Независимо от типа датчика, алгоритм подсчета импульсов остается одинаковым. Выход датчика подключается к GPIO процессора. Количество импульсов подсчитывалось через GPIO interrupt. Для этого требуется настроить GPIO на вход и включить прерывания. Об этом хорошо написано, например, тут. Число срабатываний можно посмотреть командой cat /proc/interrupts | grep gpiolib. Если же требуется реагировать на каждое событие или записывать время его срабатывания, то уже придется написать простую программу. Данный подход хорошо себя зарекомендовал и является необходимым и достаточным источником данных для подобного класса датчиков. В случае датчика с микроконтроллером, нужно перед началом работы загрузить необходимые параметры по I2C.

Заключение

Итак, что мы имеем на выходе? Компактное устройство для подсчета импульсов с оптическим датчиком и готовой реализацией отправки данных на сервер по Ethernet или WiFi. Была реализована передача данных по MQTT. Адаптивная архитектура также позволяет легко подключать практически любой другой датчик по I2C или SPI через переходник. На данный момент имеются такие варианты счетчиков: лазерный с аналоговой обработкой сигналов, лазерный с цифровой обработкой сигналов, а также индукционный счетчик для подключения внешнего промышленного индукционного датчика. Разработанный корпус позволил осуществлять поворот оптического модуля, а также его замену на другой тип датчика. В ближайших планах хотим подключить тепловизионный датчик для мониторинга нагруженных узлов в производстве.

СЧЕТЧИК НА МИКРОСХЕМЕ

Счетчик это прибор для подсчета количества цифровых импульсов, поступающих на его вход, результат счета хранится счетчиком до прихода на вход следующего импульса. Счетчик К155ИЕ5 собран на четырех триггерах, один из которых не соединен с остальными информационными цепями. С помощью данного прибора легко организовать счетчик на 8 или 16 импульсов [1-3].

  • Вход C0 – первый счетный вход, соединенный с триггером, подключенным к выходу Q1.
  • Вход C1 – второй счетный вход, соединенный с цепочкой триггеров, подключенных ко выходам Q2-Q4.
  • Входы R1 и R2 – это входы разрешения работы, для того чтобы устройство работало, на этих входах должен присутствовать низкий логический уровень.

Следует особо отметить, что питание подается на 5 выход микросхемы К155ИЕ5, общий провод 10. Питание осуществляется от стабилизированного источника питания напряжением 5В.

Проще всего с помощью данной микросхемы организовать счетчик на 8 импульсов. В данном случае в данном случае импульсы с мультивибратора [4] подаются на вход C1.

В данном режиме счетчик осуществляет подсчет 7 импульсов и сбрасывается в 0 по приходу восьмого импульса. На выходах счетчика Q2-Q4, отображается соответствующее двоичное число, выход Q1 не используется.

Подав счетные импульсы на вход C0 и подключив выход Q1 ко входу C1 получаем счетчик на 16 импульсов.

Читайте так же:
Водомерный узел со счетчиком ду50

В данном режиме счетчик осуществляет подсчет 15 импульсов и сбрасывается в 0 по приходу шестнадцатого импульса. На выходах счетчика Q1-Q4, отображается соответствующее двоичное число,

Иногда возникает необходимость организовать счетчик с коэффициентом пересчета отличным от степени двойки. Например, счетчик, сбрасывающийся по 10 импульсу. Это можно организовать, задействовав входы разрешения работы R1 и R2.

В данном режиме счетчик осуществляет подсчет 9 импульсов и сбрасывается в 0 по десятому импульсу.

Данная лабораторная позволяет очень наглядно продемонстрировать то, как происходят операции подсчета импульсов в устройствах цифровой электроники. Также данный счетчик, очевидно можно использовать как делитель частоты.

Видео

Полезные ссылки

  1. http://helpiks.org/3-9853.html
  2. http://www.chipinfo.ru/dsheets/ic/155/ie5.html
  3. http://chiplist.ru/chips/K155IE5/
  4. http://radioskot.ru/publ/nachinajushhim/multivibrator_na_ehlementakh_i_ne/5-1-0-1366

Специально для сайта Радиосхемы — Denev.

Форум по обсуждению материала СЧЕТЧИК НА МИКРОСХЕМЕ

Справочная информация по микросхеме 555 — характеристики, схема подключения, распиновка и аналоги таймера.

Схема усилителя и микрофона из пьезоэлемента, подходящая для сборки своими руками.

Изучим разные типы датчиков приближения и объекты, которые они могут обнаруживать.

Радиоприемники — обзор базовых конфигураций приёмной аппаратуры, этапы развития схемотехники.

Принцип работы электросчетчика

Счетчик электроэнергии есть в доме у каждого. И не найдется такого человека, который бы не задавался вопросом о том, как устроен, из чего состоит этот неведомый черный ящик и действительно ли можно заставить его крутиться в обратную сторону. Сегодня мы удовлетворим ваше любопытство и заглянем под пломбу, закрывающую доступ к внутреннему устройству этого очень интересного прибора.

Какими бывают электрические счетчики

По принципу работы счетного механизма эти устройства бывают трех типов:

  1. Механические – в их основе шестеренчатый редуктор, который приводит в движение тот самый загадочный вращающийся диск.
  2. Электронные – подсчет ведет генератор импульсов, результаты отображаются на жидкокристаллическом дисплее.
  3. Гибридные – генератор импульсов работает в паре с шаговым электродвигателем, аналогичным тем, что работают в кварцевых часах. Результаты выдаются тем же способом, что и у механических приборов – цифрами на разрядных кольцах, приводимых в движение шестеренчатым редуктором.

Виды электросчетчиков

Самое интересное в том, что принцип работы электросчетчика основан на одном и том же явлении – электромагнитной индукции.

И все-таки оно вертится!

Наиболее наглядно устройство электросчетчика видно на примере однофазного бытового устройства механического типа. Его принципиальная схема приведена на рисунке ниже.

Принцип работы механического счетчика

  1. Ш-образный сердечник
  2. П-образный сердечник
  3. Редуктор
  4. Постоянный магнит
  5. Диск

К клеммам 1 и 2, в которые зажимается фазный провод, подключена катушка с небольшим количеством витков, установленная на П-образный металлический сердечник. Она называется токовой, поскольку включение последовательное. К клемме 1 также подключен еще один провод, идущий на другую катушку с большим количеством витков и установленную на Ш-образный металлический сердечник.

Место соединения разъемное, крепежом является винт, называемый «винт напряжения», поскольку второй конец катушки соединен с клеммой 3, к которой подключается нулевой провод и соединение параллельное. Сердечники катушек расположены под углом 90 0 друг к другу, а в разрыве между ними находится край алюминиевого диска.

При прохождении переменного электрического тока через катушки в сердечниках наводится пульсирующее магнитное поле. Их произведением является вихревой магнитный поток, вращающийся всегда в одну сторону. По закону электромагнитной индукции этот вихрь наводит электрический ток в алюминиевом диске и понуждает его вращаться вслед за собой. Поскольку учитывается и напряжение в сети, и сила тока, то измеряется расход именно электрической мощности, которая является произведением этих величин.

Устройство механического счетчика

Все это очень напоминает устройство асинхронного однофазного электродвигателя с пусковой и рабочей обмотками. Различие только в том, что счетчик электроэнергии является измерительной машиной, поэтому для точности показаний в нем надо исключить все факторы, которые могут их изменить.

Например, момент инерции. Именно поэтому ротор, роль которого играет диск, выполняется из алюминия – наиболее легкого электропроводящего материала, не подверженного вторичному намагничиванию. Дисковидная форма выбрана по той причине, что побочным явлением электромагнитной индукции является нагревание металлов так называемыми токами Фуко.

В проводниках плоской формы они быстрее затухают. Это свойство используется, например, в высоковольтных трансформаторах большой мощности, первичная обмотка которых выполняется проводником прямоугольного сечения.

Вторым отличием механического счетчика от асинхронного двигателя является наличие в его конструкции тормоза – постоянного магнита, расположенного у края диска. Он нужен для того, чтобы вращение было равномерным, без ускорения, а остановка происходила мгновенно, без выбега. Положение этого магнита можно менять, меняя величину электрической мощности, на которую устройство не реагирует. Обычной заводской настройкой является 25 Вт.

Читайте так же:
Паспорта для счетчика цэ6850м

Диск насажен на ось, на одном конце которой находится червячная шестерня. Через нее и приводится в действие редуктор счетного механизма. Смена положений обмоток действительно может привести к реверсированию. Для этого надо лишь изменить порядок подключения: фазу подать на клемму 3 и снять ее с четвертой. Для борьбы с мошенничеством в редукторе установлен храповой механизм, блокирующий вращение в обратную сторону.

Трехфазные счетные механические устройства устроены подобным же образом. Но есть тонкости: если схема построена с глухозаземленной нейтралью – фазы на выходе силового трансформатора подстанции соединены звездой и линия состоит из трех проводников, то в счетчике два диска на одной оси. А при обычном для линий до 1000 вольт соединении треугольником и наличии отдельной нейтрали (четыре провода) дисков три. При этом подсчет расхода электрической мощности ведется в любом случае, даже если задействована хотя бы одна фаза.

И все-таки оно нагревается!

ЭлектросчтчикПринцип действия электронного счетчика основан на использовании второго, скорее побочного действия электромагнитной индукции – нагревании проводников. Температурные датчики – это могут быть термопары или терморезисторы, преобразуют тепло в электрический сигнал, который играет роль управляющего воздействия.

Подавляющее большинство электронных счетных устройств строятся на микросхемах серий МРС 3905, 3906 или 3909. Принципиально они состоят из трех модулей:

  1. Двух операционных усилителей (аналог катушек тока и напряжения).
  2. Генератора незатухающих колебаний, имеющего собственный блок питания и подключенного к одной из фаз.
  3. Счетчика импульсов.

Операционные усилители работают в паре с термодатчиками и подают электрический управляющий сигнал на генератор незатухающих колебаний, частота которых меняется в зависимости от его величины.

Если показания электросчетчика выводятся на жидкокристаллический дисплей, то количество импульсов за единицу времени учитывается отдельной микросхемой, преобразующей его в кодовый сигнал. При использовании механических редукторов импульсы поступают непосредственно на шаговый двигатель. Чем выше частота их следования, тем быстрее он вращается.

В трехфазных приборах электрического учета таких управляющих микросхем три, а в однофазных – одна.

Какие электросчетчики лучше?

Приборы учета с вращающимся диском нередко преподносятся как нечто архаичное и подлежащее замене. Энергоснабжающие организации могут просто вынуждать потребителей делать это, аргументируя тем, что электронные точнее. Но, поскольку дьявол кроется в деталях, давайте попробуем разобраться в том, стоит ли идти на поводу у монополистов.

Когда действительно стоит менять

  • Если класс точности менее 2,5. Он указан на лицевой панели прибора – цифра в кружке.
  • Количество целочисленных разрядов в показаниях менее пяти. Дробный разряд указывается кольцом красного цвета и его значение не учитывается.
  • Если прибор рассчитан на токи менее 30 ампер.

Достоинства и недостатки механических приборов

  • Невысокая точность измерений.
  • Большие габариты и вес, выглядят малоэстетично.
  • Могут шуметь.
  • Нельзя учитывать расход по многотарифному плану.
  • Для снятия показаний приходится лезть под потолок – неудобно и рискованно.
  • Учитывают только активную, полезную составляющую электрической энергии.
  • Не реагируют на потребителей мощностью менее 25 ват (например, светодиодные лампы).
  • Спокойно переносят перегрузки в сети, не выходят из строя в грозу.
  • Относительно дешевы.

Достоинства и недостатки электронных приборов

  • Высокая точность измерений.
  • Малые габариты и вес.
  • Можно установить модель, учитывающую несколько суточных тарифов.
  • Есть возможность (при наличии блоков GPRS и Wi-Fi) снимать показания дистанционно и даже автоматически их отправлять поставщику.
  • Учитывают не только полезную активную, но и реактивную, паразитную, составляющую электроэнергии.
  • Чувствительны к качеству поставляемого электричества, могут выходить из строя в грозу.
  • Хороший электронный счетчик электроэнергии не может стоить дешево.

Зная устройство, а также достоинства и недостатки приборов учета электрической энергии, вы без труда можете решить, стоит ли вам менять имеющийся, а если приобретать, то какой именно. Можно сказать точно, что счетчики с вращающимся диском не стоит считать архаикой и отказываться от них. Для сельской местности – это оптимальный вариант.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector