Azotirovanie.ru

Инженерные системы и решения
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение характеристики и режима работы сцинтилляционного счетчика

Определение характеристики и режима работы сцинтилляционного счетчика

Определение характеристики и режима работы сцинтилляционного счетчика.

Студенты: Золотарев П.В.

Преподаватель: Герасимов Д.Н.

1. Цель работы

Снять рабочую характеристику для двух детекторов при фоновой интенсивности излучения и при наличии источника.

2. Принцип работы сцинтилляционного детектора

Сцинтилляционный метод основан на использовании люминесцентной световой вспышки (сцинтилляции) в ряде веществ (сцинтилляторов), возникающей при поглощении энергии ионизирующего излучения.

Принципиальная схема сцинтилляционного детектора изображена на рис. 6.1. Под воздействием излучения от гамма-источника 1 в кристалле сцинтиллятора 2 образуются фотоны световой вспышки. Фотоны затем попадают в фотоэлектронный умножитель (ФЭУ), корпусом которого является вакуумированная стеклянная колба 3. На фотокатоде ФЭУ 4, представляющем собой полупрозрачный слой сплава Sb—Cs, напыленный на торец колбы, происходит преобразование фотонов световой вспышки в фотоэлектроны. Затем фотоэлектроны ускоряются электрическим полем и попадают на промежуточные электроды ФЭУ, называемые динодами 5. Диноды имеют малую работу выхода и за счет вторичной электронной эмиссии испускают большее число вторичных электронов, чем число падающих первичных. Повторяя процесс умножения числа электронов на каждом диноде, получаем возможность собрать на аноде 6 число электронов, превышающее на несколько порядков число фотоэлектронов. Поэтому импульсы на нагрузочном сопротивлении 7, регистрируемые пересчетным устройством через монтажную емкость 8, могут иметь значительную амплитуду (порядка нескольких вольт).

Рис. 6.1. Принципиальная схема сцинтилляционного детектора

Помимо регистрации числа импульсов тока в единицу времени может измеряться и средняя величина анодного тока. В соответствии с этим различают импульсный и токовый режимы работы сцинтилляционного детектора.

По сравнению с газоразрядными счетчиками сцинтилляционные детекторы имеют следующие преимущества: высокую эффективность регистрации излучения, высокое временное разрешение, возможность исследовать энергетический спектр регистрируемого излучения.

3. Основные характеристики сцинтилляторов

Важнейшей характеристикой сцинтиллятора является его сцинтилляционная эффективность η, равная отношению общей энергии фотонов Еф, образующихся в сцинтилляторе, к поглощенной в нем энергии излучения Еп:

, где p — число фотонов, образующихся в кристалле; Ефср — средняя энергия фотона, рассчитываемая через среднюю длину волны фотонов λср.

Процессы передачи энергии гамма-излучения сложному веществу характеризуются эффективным атомным номером последнего Zэф, равным атомному номеру условного простого вещества с одинаковым значением электронного коэффициента передачи энергии. При условии электронного равновесия равенство значений Zэф приводит к одинаковым значениям поглощенной энергии гамма-излучения, отнесенной к единице массы.

Одним из важных свойств сцинтиллятора является его прозрачность для собственного излучения. Используемые в лаборатории кристаллы обладают высокой прозрачностью, поэтому числа образованных фотонов в кристалле и фотонов, попадающих на фотокатод, можно считать равными.

4. Расчет амплитуды импульса на аноде ФЭУ

Зная число фотонов р, попадающих на фотокатод ФЭУ, и квантовый выход g фотоэлектронов на один фотон, можно вычислить количество фотоэлектронов Nк, вырываемых из фотокатода:

Если ФЭУ имеет m динодов, а коэффициент вторичной электронной эмиссии каждого из них равен σ, то коэффициент усиления фотоэлектронного умножителя может быть определен по формуле:

Для различных ФЭУ при m = 8 — 14, обычно К= 10 5 — 10 6 . Зависимость σ от напряжения между соседними динодами, приведена на рис. 6.2.

Рис. 6.2. Зависимость коэффициента вторичной электронной эмиссии σ от напряжения между динодами ФЭУ

Число электронов Na , собираемых на аноде и определяющих величину сигнала на выходе ФЭУ при поглощении в сцинтилляторе энергии EП, равно:

При этом амплитуду сигнала на выходе ФЭУ можно рассчитать по формуле:

, где e – заряд электрона, C – эффективная емкость ФЭУ.

5. Лабораторный стенд

В состав лабораторного стенда входят следующие приборы:

· Источник стабилизированного напряжения ВСВ-1 с двумя декадами регулирования напряжения (плавной и дискретной).

· Пересчетный прибор, позволяющий регистрировать число импульсов за фиксированное время или измерять время набора фиксированного числа импульсов.

· Два сцинтилляционных детектора (органический и неорганический), каждый из которых собран в едином корпусе вместе с ФЭУ-19М.

Сцинтилляционные счетчики (стр. 1 из 5)

Метод регистрации заряженных частиц с помощью счета вспышек света, возникающих при попадании этих частиц на экран из сернистого цинка (ZnS), является одним из первых методов регистрации ядерных излучений.

Еще в 1903 г. Крукс и другие показали, что если рассматривать экран из сернистого цинка, облучаемый a-частицами, через увеличительное стекло в темном помещении, то на нем можно заметить появление отдельных кратковременных вспышек света — сцинтилляций. Было установлено, что каждая из этих сцинтилляций создается отдельной a-частицей, попадающей на экран. Круксом был построен простой прибор, названный спинтарископом Крукса, предназначенный для счета a-частиц.

Визуальный метод сцинтилляций был использован в дальнейшем в основном для регистрации a-частиц и протонов с энергией в несколько миллионов электронвольт. Отдельные быстрые электроны регистрировать не удалось, так как они вызывают очень слабые сцинтилляции. Иногда при облучении электронами сернисто-цинкового экрана удавалось наблюдать вспышки, но это происходило лишь тогда, когда на один и тот же кристаллик сернистого цинка попадало одновременно достаточно большое число электронов.

Гамма-лучи никаких вспышек на экране не вызывают, создавая лишь общее свечение. Это позволяет регистрировать a-частицы в присутствии сильного g-излучения.

Визуальный метод сцинтилляций позволяет регистрировать очень небольшое число частиц в единицу времени. Наилучшие условия для счета сцинтилляций получаются тогда, когда их число лежит между 20 и 40 в минуту. Конечно, метод сцинтилляций является субъективным, и результаты в той или иной мере зависят от индивидуальных качеств экспериментатора.

Несмотря на недостатки, визуальный метод сцинтилляций сыграл огромную роль в развитии ядерной и атомной физики. С помощью него Резерфорд регистрировал a-частицы при их рассеянии на атомах. Именно эти опыты привели Резерфорда к открытию ядра. Впервые визуальный метод позволил обнаружить быстрые протоны, выбиваемые из ядер азота при бомбардировке их a-частицами, т.е. первое искусственное расщепление ядра.

Визуальный метод сцинтилляций имел большое значение вплоть до тридцатых годов, когда появление новых методов регистрации ядерных излучений заставило на некоторое время забыть его. Сцинтилляционный метод регистрации возродился в конце сороковых годов XX века на новой основе. К этому времени были разработаны фотоэлектронные умножители (ФЭУ), позволяющие регистрировать очень слабые вспышки света. Были созданы сцинтилляционные счетчики, с помощью которых можно увеличить скорость счета в 10 8 и даже более раз по сравнению с визуальным методом, а также можно регистрировать и анализировать по энергии как заряженные частицы, так и нейтроны и g-лучи.

Читайте так же:
Водоучет поверка счетчиков юао

§ 1. Принцип работы сцинтилляционного счетчика

Сцинтилляционный счетчик представляет собой сочетание сцинтиллятора (фосфора) и фотоэлектронного умножителя (ФЭУ). В комплект счетчика входят также источник электрического питания ФЭУ и радиотехническая аппаратура, обеспечивающая усиление и регистрацию импульсов ФЭУ. Иногда сочетание фосфора с ФЭУ производится через специальную оптическую систему (светопровод).

Принцип работы сцинтилляционного счетчика состоит в следующем. Заряженная частица, попадая в сцинтиллятор, производит ионизацию и возбуждение его молекул, которые через очень короткое время (10 -6 10 -9 сек) переходят в стабильное состояние, испуская фотоны. Возникает вспышка света (сцинтилляция). Некоторая часть фотонов попадает на фотокатод ФЭУ и выбивает из него фотоэлектроны. Последние под действием приложенного к ФЭУ напряжения фокусируются и направляются на первый электрод (динод) электронного умножителя. Далее в результате вторичной электронной эмиссии число электронов лавинообразно увеличивается, и на выходе ФЭУ появляется импульс напряжения, который затем уже усиливается и регистрируется радиотехнической аппаратурой.

Амплитуда и длительность импульса на выходе определяются свойствами как сцинтиллятора, так и ФЭУ.

В качестве фосфоров используются:

— жидкие органические сцинтилляторы,

— твердые пластмассовые сцинтилляторы,

Основными характеристиками сцинтилляторов являются: световой выход, спектральный состав излучения и длительность сцинтилляций.

При прохождении заряженной частицы через сцинтиллятор в нем возникает некоторое число фотонов с той или иной энергией. Часть этих фотонов будет поглощена в объеме самого сцинтиллятора, и вместо них будут испущены другие фотоны с несколько меньшей энергией. В результате процессов реабсорбции наружу будут выходить фотоны, спектр которых характерен для данного сцинтиллятора.

Очень важно, чтобы спектр фотонов, выходящих из сцинтиллятора, совпадал или хотя бы частично перекрывался со спектральной характеристикой ФЭУ.

Сцинтилляционная эффективность учитывает как число фотонов, испускаемых сцинтиллятором на единицу поглощенной энергии, так и чувствительность данного ФЭУ к этим фотонам.

Обычно сцинтилляционную эффективность данного сцинтиллятора определяют путем сравнения со сцинтилляционной эффективностью сцинтиллятора, принятого за эталон.

Интенсивность сцинтилляции изменяется со временем по экспоненциальному закону

где I — максимальное значение интенсивности сцинтилляции; t постоянная времени затухания, определяемая как время, в течение которого интенсивность сцинтилляции уменьшается в е раз.

Число фотонов света n, испущенных за время t после попадания регистрируемой частицы, выражается формулой

Процессы люминесценции (высвечивания) фосфора делят на два вида: флуоресценции и фосфоресценции. Если высвечивание происходит непосредственно во время возбуждения или в течение промежутка времени порядка 10 -8 сек, то процесс называется флуоресценцией. Интервал 10 -8 сек выбран потому, что он по порядку величины равен времени жизни атома в возбужденном состоянии для так называемых разрешенных переходов.

Хотя спектры и длительность флуоресценции не зависят от вида возбуждения, выход же флуоресценции существенно зависит от него. Так при возбуждении кристалла a-частицами выход флуоресценции почти на порядок меньше, чем при фотовозбуждении.

Под фосфоресценцией понимают люминесценцию, которая продолжается значительное время после прекращения возбуждения. Но основное различие между флуоресценцией и фосфоресценцией заключается не в длительности послесвечения. Фосфоресценция кристаллофосфоров возникает при рекомбинации электронов и дырок, возникших при возбуждении. В некоторых кристаллах возможно затягивание послесвечения за счет того, что электроны и дырки захватываются «ловушками», из которых они могут освободиться, лишь получив дополнительную необходимую энергию. Отсюда очевидна зависимость длительности фосфоресценции от температуры. В случае сложных органических молекул фосфоресценция связана с пребыванием их в метастабильном состоянии, вероятность перехода из которого в основное состояние может быть малой. И в этом случае будет наблюдаться зависимость скорости затухания фосфоресценции от температуры.

Примеры использования сцинтилляционных счетчиков

Метод регистрации заряженных частиц с помощью счета вспы­шек света, возникающих при попадании этих частиц на экран из сернистого цинка (ZnS), является одним из первых методов регистрации ядерных излучений.

Еще в 1903 г. Крукс и другие показали, что если рассматри­вать экран из сернистого цинка, облучаемый -частицами, через увеличительное стекло в темном помещении, то на нем можно за­метить появление отдельных кратковременных вспышек света — сцинтилляций. Было установлено, что каждая из этих сцинтил­ляций создается отдельной -частицей, попадающей на экран. Круксом был построен простой прибор, названный спинтари­скопом Крукса, предназначенный для счета -частиц.

Визуальный метод сцинтилляций был использован в дальней­шем в основном для регистрации -частиц и протонов с энергией в несколько миллионов электронвольт. Отдельные быстрые элек­троны регистрировать не удалось, так как они вызывают очень слабые сцинтилляции. Иногда при облучении электронами серни­сто-цинкового экрана удавалось наблюдать вспышки, но это происходило лишь тогда, когда на один и тот же кристаллик сернистого цинка попадало одновременно достаточно большое число электронов.

Гамма-лучи никаких вспышек на экране не вызывают, создавая лишь общее свечение. Это позволяет регистрировать -частицы в присутствии сильного -излучения.

Визуальный метод сцинтилляций позволяет регистрировать очень небольшое число частиц в единицу времени. Наилучшие условия для счета сцинтилляций получаются тогда, когда их число лежит между 20 и 40 в минуту. Конечно, метод сцинтилля­ций является субъективным, и результаты в той или иной мере зависят от индивидуальных качеств экспериментатора.

Несмотря на недостатки, визуальный метод сцинтилляций сыграл огромную роль в развитии ядерной и атомной физики. С помощью него Резерфорд регистрировал -частицы при их рассеянии на атомах. Именно эти опыты привели Резерфорда к открытию ядра. Впервые визуальный метод позволил обнаружить быстрые протоны, выбиваемые из ядер азота при бомбардировке их -частицами, т.е. первое искусственное расщепление ядра.

Визуальный метод сцинтилляций имел большое значение вплоть до тридцатых годов, когда появление новых методов регистрации ядерных излучений заставило на некоторое время забыть его. Сцинтилляционный метод регистрации возродился в конце сороковых годов XX века на новой основе. К этому времени были разработаны фотоэлектронные умножители (ФЭУ), позволяющие регистрировать очень слабые вспышки света. Были созданы сцинтилляционные счетчики, с помощью которых можно увеличить скорость счета в 10 8 и даже более раз по сравнению с визуальным методом, а также можно регистрировать и анализи­ровать по энергии как заряженные частицы, так и нейтроны и -лучи.

§ 1. Принцип работы сцинтилляционного счетчика

Сцинтилляционный счетчик представляет собой сочетание сцинтиллятора (фосфора) и фотоэлектронного умножителя (ФЭУ). В комплект счетчика входят также источник электрического питания ФЭУ и радиотехническая аппаратура, обеспечивающая усиление и регистрацию импульсов ФЭУ. Иногда сочетание фос­фора с ФЭУ производится через специальную оптическую систему (светопровод).

Читайте так же:
Счетчики подробной статистики для сайта

Принцип работы сцинтилляционного счетчика состоит в сле­дующем. Заряженная частица, попадая в сцинтиллятор, произво­дит ионизацию и возбуждение его молекул, которые через очень короткое время (10 -6 — 10 -9 сек ) переходят в стабильное состоя­ние, испуская фотоны. Возникает вспышка света (сцинтилляция). Некоторая часть фотонов попадает на фотокатод ФЭУ и выбивает из него фотоэлектроны. Последние под действием приложенного к ФЭУ напряжения фокусируются и направляются на первый электрод (динод) электронного умножителя. Далее в результате вторичной электронной эмиссии число электронов лавинообразно увеличивается, и на выходе ФЭУ появляется импульс напряжения, который затем уже усиливается и регистрируется радиотехниче­ской аппаратурой.

Амплитуда и длительность импульса на выходе определяются свойствами как сцинтиллятора, так и ФЭУ.

В качестве фосфоров используются:

жидкие органические сцинтилляторы,

твердые пластмассовые сцинтилляторы,

Основными характеристиками сцинтилляторов являются: све­товой выход, спектральный состав излучения и длительность сцинтилляций.

При прохождении заряженной частицы через сцинтиллятор в нем возникает некоторое число фотонов с той или иной энергией. Часть этих фотонов будет поглощена в объеме самого сцинтилля­тора, и вместо них будут испущены другие фотоны с несколько меньшей энергией. В результате процессов реабсорбции наружу будут выходить фотоны, спектр которых характерен для данного сцинтиллятора.

Световым выходом или конверсионной эффективностью сцин­тиллятора  называется отношение энергии световой вспышки , выходящей наружу, к величине энергии Е заряженной частицы, потерянной в сцинтилляторе,

где — среднее число фотонов, выходящих наружу, — сред­няя энергия фотонов. Каждый сцинтиллятор испускает не моно­энергетические кванты, а сплошной спектр, характерный для данного сцинтиллятора.

Очень важно, чтобы спектр фотонов, выходящих из сцинтилля­тора, совпадал или хотя бы частично перекрывался со спектраль­ной характеристикой ФЭУ.

Степень перекрытия внешнего спектра сцинтилляции со спек­тральной характеристикой . данного ФЭУ определяется коэф­фициентом согласования

где — внешний спектр сцинтиллятора или спектр фотонов, выходящих наружу из сцинтиллятора. На практике при сравне­нии сцинтилляторов, сочетаемых с данными ФЭУ, вводят понятие сцинтилляционной эффективности, которая определяется следу­ющим выражением:

Сцинтилляционная эффективность учитывает как число фотонов, испускаемых сцинтиллятором на единицу поглощенной энер­гии, так и чувствительность данного ФЭУ к этим фотонам.

Обычно сцинтилляционную эффективность данного сцинтиллятора определяют путем сравнения со сцинтилляционной эффек­тивностью сцинтиллятора, принятого за эталон.

Интенсивность сцинтилляции изменяется со временем по экспоненциальному закону

где I 0 — максимальное значение интенсивности сцинтилляции; t 0 — постоянная времени затухания, определяемая как время, в течение которого интенсивность сцинтилляции уменьшается в е раз.

Число фотонов света n , испущенных за время t после попада­ния регистрируемой частицы, выражается формулой

где — полное число фотонов, испущенных в процессе сцинтил­ляции.

Процессы люминесценции (высвечивания) фосфора делят на два вида: флуоресценции и фосфоресценции. Если высвечивание происходит непосредственно во время возбуждения или в течение промежутка времени порядка 10 -8 сек, то процесс называется флуоресценцией. Интервал 10 -8 сек выбран потому, что он по порядку величины равен времени жизни атома в возбужденном состоянии для так называемых разрешенных переходов.

Хотя спектры и длительность флуоресценции не зависят от вида возбуждения, выход же флуоресценции существенно зависит от него. Так при возбуждении кристалла -частицами выход флуо­ресценции почти на порядок меньше, чем при фотовозбуждении.

Под фосфоресценцией понимают люминесценцию, которая продолжается значительное время после прекращения возбужде­ния. Но основное различие между флуоресценцией и фосфорес­ценцией заключается не в длительности послесвечения. Фосфо­ресценция кристаллофосфоров возникает при рекомбинации элек­тронов и дырок, возникших при возбуждении. В некоторых кри­сталлах возможно затягивание послесвечения за счет того, что электроны и дырки захватываются «ловушками», из которых они могут освободиться, лишь получив дополнительную необхо­димую энергию. Отсюда очевидна зависимость длительности фос­форесценции от температуры. В случае сложных органических молекул фосфоресценция связана с пребыванием их в метастабильном состоянии, вероятность перехода из которого в основное состояние может быть малой. И в этом случае будет наблюдаться зависимость скорости затухания фосфоресценции от темпера­туры.

Неорганические сцинтилляторы . Неорга­нические сцинтилляторы представляют собой кристаллы неорга­нических солей. Практическое применение в сцинтилляционной технике имеют главным образом галоидные соединения некоторых щелочных металлов.

Процесс возникновения сцинтилляций можно представить при помощи зонной теории твердого тела. В отдельном атоме, не взаи­модействующем с другими, электроны находятся на вполне опре­деленных дискретных энергетических уровнях. В твердом теле атомы находятся на близких расстояниях, и их взаимодействие достаточно сильно. Благодаря этому взаимодействию уровни внешних электронных оболочек расщепляются и образуют зоны, отделенные друг от друга запрещенными зонами. Самой внешней разрешенной зоной, заполненной электронами, является валент­ная зона. Выше ее располагается свободная зона — зона прово­димости. Между валентной зоной и зоной проводимости находится запрещенная зона, энергетическая ширина которой составляет несколько электронвольт.

Если в кристалле имеются какие-либо дефекты, нарушения решетки или примесные атомы, то в этом случае возможно появле­ние энергетических электронных уровней, расположенных в за­прещенной зоне. При внешнем воздействии, например при про­хождении через кристалл быстрой заряженной частицы, электроны могут переходить из валентной зоны в зону проводимости. В ва­лентной зоне останутся свободные места, обладающие свойствами положительно заряженных частиц с единичным зарядом и назы­ваемые дырками.

Описанный процесс и является процессом возбуждения кри­сталла. Возбуждение снимается путем обратного перехода элек­тронов из зоны проводимости в валентную зону, происходит рекомендация электронов и дырок. Во многих кристаллах пере­ход электрона из зоны проводимости в валентную происходит через промежуточные люминесцентные центры, уровни которых находятся в запрещенной зоне. Указанные центры обусловли­ваются наличием в кристалле дефектов или примесных атомов. При переходе электронов в две стадии испускаются фотоны с энер­гией, меньшей ширины запрещенной зоны. Для таких фотонов вероятность поглощения в самом кристалле мала и поэтому све­товой выход для него много больше, чем для чистого, беспримес­ного кристалла.

На практике, для увеличения светового выхода неорганиче­ских сцинтилляторов вводятся специальные примеси других элементов, называемых активаторами. Так, например, в кристалл йодистого натрия в качестве активатора вводится таллий. Сцинтиллятор, построенный на основе кристалла NaJ(Tl), обладает большим световым выходом. Сцинтиллятор NaJ(Тl) имеет значильтельные преимущества по сравнению с газонаполненными счет­чиками:

Читайте так же:
Использование счетчиков банкнот детекторов купюр

большую эффективность регистрации -лучей (с большими кристаллами эффективность регистрации может достигать десят­ков процентов);

малую длительность сцинтилляции (2,5 •10 -7 сек);

линейную связь между амплитудой импульса и величиной энергии, потерянной заряженной частицей.

Последнее свойство требует пояснений. Световой выход сцинтиллятора имеет некоторую зависимость от удельных потерь энергии заряженной частицы .

Рис. 1. Зависимость светового выхода

кристалла NaJ (T1) от энергии частиц.

При очень больших ве­личинах возможны зна­чительные нарушения кристал­лической решетки сцинтилля­тора, которые приводят к воз­никновению локальных центров тушения. Это обстоятельство может привести к относитель­ному уменьшению светового вы­хода. Действительно, экспери­ментальные факты свидетельствуют о том, что для тяжелых частиц выход нелинеен, а линейная зависимость начинает проявляться только с энергии в несколько миллионов электронвольт. На рис. 1 приведены кривые зависи­мости  от Е: кривая 1 для электронов, кривая 2 для  частиц.

Кроме указанных щелочно-галоидных сцинтилляторов иногда используются другие неорганические кристаллы: ZnS (Tl), CsJ (Tl), CdS (Ag), CaWO 4 , CdWO 4 и др.

Органические кристаллические сцинтилляторы. Молекулярные силы связи в органических кристаллах малы по сравнению с силами, действующими в не­органических кристаллах. Поэтому взаимодействующие моле­кулы практически не возмущают энергетические электронные уровни друг у друга и процесс люминесценции органического кристалла является процессом, характерным для отдельных молекул. В основном электронном состоянии молекула имеет несколько колебательных уровней. Под воздействием регистрируе­мого излучения молекула переходит в возбужденное электронное состояние, которому также соответствует несколько колебатель­ных уровней. Возможны также ионизация и диссоциация молекул. В результате рекомбинации ионизованной молекулы, она, как правило, образуется в возбужденном состоянии. Первоначально возбужденная молекула может находиться на высоких уровнях возбуждения и через короткое время (

10 -11 сек) испускает фотон высокой энергии. Этот фотон поглощается другой молекулой, причем часть энергии возбуждения этой молекулы может быть израсходована на тепловое движение и испущенный впоследствии фотон будет обладать уже меньшей энергией по сравнению с пре­дыдущим. После нескольких циклов испускания и поглощения образуются молекулы, находящиеся на первом возбужденном уровне; они испускают фотоны, энергия которых может оказаться уже недостаточной для возбужде­ния других молекул и, таким обра­зом, кристалл будет прозрачным для возникающего излучения.

Сцинтилляционные счетчики: принцип действия, достоинства и недостатки оборудования. Сцинтилляционные счетчики

В сцинтилляционном счетчике ионизирующее излучение вызывает вспышку света в соответствующем сцинтилляторе, который может быть как твердым, так и жидким. Эта вспышка передается в фотоэлектронный умножитель, который превращает ее в импульс электрического тока. Импульс тока усиливается в последующих ступенях ФЭУ вследствие их высокого коэффициента вторичной эмиссии.

Несмотря на то, что при работе с сцинтилляционными счетчиками в общем случае необходима более сложная электронная аппаратура, эти счетчики обладают по сравнению со счетчиками Гейгера — Мюллера существенными преимуществами.

1. Эффективность для счета рентгеновского и гамма-излучений значительно больше; при благоприятных обстоятельствах она достигает 100%.

2. Световая отдача в некоторых сцинтилляторах пропорциональна энергии возбуждающей частицы или кванта.

3. Временная разрешающая способность более высока.

Сцинтилляционный счетчик является, таким образом, детектором, пригодным для регистрации излучении малой интенсивности, для анализа распределения по энергиям при не слишком высоких требованиях к разрешающей способности и для измерений с помощью схемы совпадений при высокой интенсивности излучения.

1) Протоны и другие сильно ионизирующие частицы. Если речь идет только о регистрации этих частиц, то одинаково пригодны все виды сцинтилляторов, причем, вследствие их высокой тормозной способности, достаточны слои толщиной порядка миллиметра и еще меньше. Надо, однако, иметь в виду, что световая отдача протонов и б-частиц в органических сцинтилляторах составляет лишь около «/ 10 от световой отдачи электронов той же энергии, в то время как в неорганических сцинтилляторах ZnS и NaJ обе они одного порядка.

Зависимость между энергией световых вспышек и связанной с ней величиной импульсов, а также энергией частиц, переданной сцинтиллятору, для органических веществ, вообще говоря, нелинейна. Для ZnS 1 NaJ и CsJ эта зависимость, однако, близка к линейной. Вследствие хорошей прозрачности для собственного флуоресцентного излучения кристаллы NaJ и CsJ позволяют получить отличную энергетическую разрешающую способность; надо, однако, следить за тем, чтобы поверхность, через которую частицы проникают в кристалл, была очень чистой.

2) Нейтроны. Медленные нейтроны можно обнаруживать, пользуясь реакциями Li6Hs, B10Li» или CdlisCd114. В качестве сцинтилляторов для этой цели применяются монокристаллы из LiJ, порошкообразные смеси, например, 1 весовая часть B 2 O 3 и 5 весовых частей ZnS, их напыляют непосредственно на окошко ФЭУ; также можно применять

Блок-схема сцинтилляционного спектрометра. 1 — сцинтиллятор, 2 — ФЭУ, з — источник высокого напряжения, 4 — катодный повторитель, д — линейный усилитель, 6 — амплитудный анализатор импульсов, 7 — регистрирующий прибор.

ZnS, суспендированный в расплавленном B 2 O 3 , соответствующие соединения бора в сцинтилляторах из искусственных веществ и смеси метилбората или пропионата кадмия с жидкими сцинтилляторами. Если при измерениях нейтронов надо исключить влияние г-излучения, то при тех реакциях, которые вызывают эмиссию тяжелых частиц, надо учитывать указанное выше соотношение для световой отдачи различных сцинтилляторов в зависимости от рода частиц.

Быстрые нейтроны регистрируются с помощью протонов отдачи, образующихся в водородсодержащих веществах. Так как высокое содержание водорода имеет место только в органических сцинтилляторах, то вследствие упомянутых причин уменьшить влияние г-излучения затруднительно. Лучшие результаты достигаются, если процесс образования протонов отдачи отделить от возбуждения сцинтиллятора г-лучами. В этом случае слой последнего должен быть тонким, его толщина определяется пробегом протонов отдачи, так что вероятность регистрации г-излучения существенно уменьшается. В качестве сцинтиллятора в этом случае предпочтительнее применять ZnS. Можно также суспендировать порошкообразный ZnS в прозрачном искусственном веществе, содержащем водород.

Энергетический спектр быстрых нейтронов при помощи сцинтилляторов исследовать почти невозможно. Это объясняется тем, что энергия протонов отдачи может принимать всевозможные значения, вплоть до полной энергии нейтронов, в зависимости оттого, каким образом происходит столкновение.

3) Электроны, в-частицы. Как и для других типов излучений, энергетическая разрешающая способность сцинтиллятора для электронов зависит от соотношения между световой энергией и энергией, переданной сцинтиллятору ионизирующей частицей. Это обусловлено тем, что полуширина кривой распределения величин импульсов, вызванных моноэнергетическими падающими частицами, вследствие статистических колебаний в первом приближении обратно пропорциональна квадратному корню из числа фотоэлектронов, выбитых из фотокатода ФЭУ. Из применяемых в настоящее время сцинтилляторов наибольшие амплитуды импульсов дает NaJ 1 а пз органических сцинтилляторов — антрацен, который при прочих равных условиях дает импульсы примерно в два раза меньшей амплитуды, чем NaJ.

Читайте так же:
Счетчик моточасов сч 100б

Так как эффективные сечения рассеяния электронов сильно возрастают с увеличением атомного номера, то при применении NaJ 80-90% всех падающих электронов снова рассеивается из кристалла; при применении антрацена этот аффект достигает приблизительно 10%. Рассеянные электроны вызывают импульсы, величина которых меньше величины, отвечающей полной энергии электронов. Вследствие этого количественная оценка в-спектров, полученных при помощи кристаллов из NaJ, весьма затруднительна. Поэтому для в-спектроскопии часто более целесообразно применять органические сцинтилляторы, которые состоят из элементов с малыми атомными номерами.

Обратное рассеяние можно ослабить также следующими приемами. Вещество, в-излучение которого должно исследоваться, или примешивают к сцинтиллятору, если оно не подавляет флуоресцентного излучения, или помещают между двумя поверхностями сцинтилляторов, флуоресцентное Iryny 1 Ienne которых действует на фотокатод, или, наконец, применяют сцинтиллятор с внутренним каналом, в который проходит в-излучение.

Зависимость между световой энергией и энергией, переданной сцинтиллятору излучением, для NaJ линейна. Для всех органических сцинтилляторов это отношение при малой энергии электронов уменьшается. Указанная нелинейность должна учитываться при количественной оценке спектров.

4) Рентгеновское и гамм а-излучение. Процесс взаимодействия электромагнитного излучения с сцинтиллятором в основном состоит из трех элементарных процессов.

При фотоэффекте энергия кванта переходит почти полностью в кинетическую энергию фотоэлектрона, причем она вследствие малого пробега фотоэлектрона в большинстве случаев абсорбируется в сцинтилляторе. Вторичный квант, соответствующий энергии связи электрона, или также поглощается сцинтиллятором, или выходит из него.

В эффекте Комптона электрону передается «только часть энергии кванта. Эта часть с большой вероятностью поглощается в сцинтилляторе. Рассеянный фотон, энергия которого уменьшилась на величину, равную энергии комптон-электрона, также или поглощается сцинтиллятором, или выходит из него.

При образовании пар энергия первичного кванта, за вычетом энергии образования пары, переходит в кинетическую энергию этой пары и в основном поглощается сцинтиллятором. Излучение, образующееся при аннигиляции электрона и позитрона, поглощается в сцинтилляторе или выходит из него.

Энергетическая зависимость эффективных сечений для этих процессов такова, что при малой энергии квантов в основном имеет место фотоэффект; начиная с энергии 1,02 Мае, может наблюдаться образование пар, однако вероятность этого процесса достигает заметной величины лишь при существенно более высоких энергиях. В промежуточной области основную роль играет эффект Комптона.

С увеличением порядкового номера Z эффективные сечения при фотоэффекте и при образовании пар возрастают значительно сильнее, чем при эффекте Комптона. Однако при этом электрону передается:

1) при фотоэффекте, — кроме энергии кванта, переходящей в энергию электрона уже при первичном эффекте, еще только энергия связи фотоэлектрона, отвечающая вторичному излучению, мягкому и легко поглощаемому;

2) при образовании пар — только излучение аннигиляции с дискретной известной энергией. При эффекте Комптона энергия вторичных электронов и рассеянных квантов имеет широкую область возможных значений. Так как» вторичные кванты, как уже было сказано, могут не испытать поглощения и выйти из сцинтиллятора, то для облегчения интерпретации спектров целесообразно по возможности сузить область, в которой преобладает эффект Komhtohj, выбирая сцинтилляторы с большим Ж, например NaJ. Кроме того, отношение энергии света к переданной сцинтиллятору энергии для NaJ практически не зависит от энергии электронов; поэтому во всех сложных процессах, при которых кванты поглощаются, выделяется одинаковое количество света. Такие сложные процессы происходят с тем большей вероятностью, чем больше размеры сцинтиллятора.

Ослабление гамма-лучей в антрацене, ц — коэффициент ослабления; ф — коэффициент фотопоглощения, а — коэффициент комптоновского рассеяния, р — коэффициент образования пар.

являются вещество, люминесцирующее под действием заряженных частиц (сцинтиллятор), и фотоэлектронный умножитель (ФЭУ). Визуальные наблюдения световых вспышек (сцинтилляций) под действием ионизирующих частиц (a-частиц, осколков деления ядер) были основным методом ядерной физики в начале 20 в. (см. Спинтарископ ). Позднее Сцинтилляционный счётчик был полностью вытеснен ионизационными камерами и пропорциональными счётчиками . Его возвращение в ядерную физику произошло в конце 40-х гг., когда для регистрации сцинтилляций были использованы многокаскадные ФЭУ с большим коэффициентом усиления, способные зарегистрировать чрезвычайно слабые световые вспышки.

Принцип действия Сцинтилляционный счётчик состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны (см. Люминесценция ). Фотоны, попадая на катод ФЭУ, выбивают электроны (см. Фотоэлектронная эмиссия ), в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается и регистрируется (см. рис. ). Детектирование нейтральных частиц (нейтронов, g-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и g-квантов с атомами сцинтиллятора.

В качестве сцинтилляторов используются различные вещества (твёрдые, жидкие, газообразные). Большое распространение получили пластики, которые легко изготовляются, механически обрабатываются и дают интенсивное свечение. Важной характеристикой сцинтиллятора является доля энергии регистрируемой частицы, которая превращается в световую энергию (конверсионная эффективность h). Наибольшими значениями hобладают кристаллические сцинтилляторы: , активированный , антрацен и . Др. важной характеристикой является время высвечивания t, которое определяется временем жизни на возбуждённых уровнях. Интенсивность свечения после прохождения частицы изменяется экспоненциально: , где 0 начальная интенсивность. Для большинства сцинтилляторов t лежит в интервале 10 –9 — 10 –5 сек. Короткими временами свечения обладают пластики (табл. 1). Чем меньше t, тем более быстродействующим может быть сделан Сцинтилляционный счётчик

Для того чтобы световая вспышка была зарегистрирована ФЭУ, необходимо, чтобы спектр излучения сцинтиллятора совпадал со спектральной областью чувствительности фотокатода ФЭУ, а материал сцинтиллятора был прозрачен для собственного излучения. Для регистрации медленных нейтронов в сцинтиллятор добавляют или В. Для регистрации быстрых нейтронов используются водородсодержащие сцинтилляторы (см. Нейтронные детекторы ). Для спектрометрии g-квантов и электронов высокой энергии используют Nal (), обладающий большой плотностью и высоким эффективным атомным номером (см. Гамма-излучение ).

Сцинтилляционный счётчик изготавливают со сцинтилляторами разных размеров — объёмом от 1-2 мм 3 до 1-2 м 3 . Чтобы не «потерять» излученный свет, необходим хороший контакт ФЭУ со сцинтиллятором. В Сцинтилляционный счётчик небольших размеров сцинтиллятор непосредственно приклеивается к фотокатоду ФЭУ. Все остальные его стороны покрываются слоем светоотражающего вещества (например, , O 2). В Сцинтилляционный счётчик большого размера используют световоды (обычно из полированного органического стекла).

Читайте так же:
Где написан коэффициент трансформации счетчика

ФЭУ, предназначенные для Сцинтилляционный счётчик , должны обладать высокой эффективностью фотокатода (до 2,5%), высоким коэффициентом усиления (10 8 -10 8), малым временем собирания электронов (

10 –8 сек ) при высокой стабильности этого времени. Последнее позволяет достичь разрешающей способности по времени Сцинтилляционный счётчик £10 –9 сек. Высокий коэффициент усиления ФЭУ наряду с малым уровнем собственных шумов делает возможной регистрацию отдельных электронов, выбитых с фотокатода. Сигнал на аноде ФЭУ может достигать 100 в.

Табл. 1. — Характеристики некоторых твёрдых и жидких сцинтилляторов,

применяемых в сцинтилляционных счётчиках

Достоинства Сцинтилляционный счётчик : высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность и относительно невысокая стоимость. Благодаря этим качествам Сцинтилляционный счётчик широко применяется в ядерной физике, физике элементарных частиц и космических лучей , в промышленности (радиационный контроль), дозиметрии , радиометрии , геологии, медицине и т. д. Недостатки Сцинтилляционный счётчик : малая чувствительность к частицам низких энергий (£ 1 кэв ), невысокая разрешающая способность по энергии (см. Сцинтилляционный спектрометр ).

Сцинтилляционный счетчик применение. Сцинтилляционные счетчики: принцип действия, достоинства и недостатки оборудования

Принцип действия Сцинтилляционный счётчик состоит в следующем: заряженная частица, проходя через сцинтиллятор, наряду с ионизацией атомов и молекул возбуждает их. Возвращаясь в невозбуждённое (основное) состояние, атомы испускают фотоны (см. Люминесценция ). Фотоны, попадая на катод ФЭУ, выбивают электроны (см. Фотоэлектронная эмиссия ), в результате чего на аноде ФЭУ возникает электрический импульс, который далее усиливается и регистрируется (см. рис. ). Детектирование нейтральных частиц (нейтронов, g-квантов) происходит по вторичным заряженным частицам, образующимся при взаимодействии нейтронов и g-квантов с атомами сцинтиллятора.

В качестве сцинтилляторов используются различные вещества (твёрдые, жидкие, газообразные). Большое распространение получили пластики, которые легко изготовляются, механически обрабатываются и дают интенсивное свечение. Важной характеристикой сцинтиллятора является доля энергии регистрируемой частицы, которая превращается в световую энергию (конверсионная эффективность h). Наибольшими значениями hобладают кристаллические сцинтилляторы: , активированный , антрацен и . Др. важной характеристикой является время высвечивания t, которое определяется временем жизни на возбуждённых уровнях. Интенсивность свечения после прохождения частицы изменяется экспоненциально: , где 0 начальная интенсивность. Для большинства сцинтилляторов t лежит в интервале 10 –9 — 10 –5 сек. Короткими временами свечения обладают пластики (табл. 1). Чем меньше t, тем более быстродействующим может быть сделан Сцинтилляционный счётчик

Для того чтобы световая вспышка была зарегистрирована ФЭУ, необходимо, чтобы спектр излучения сцинтиллятора совпадал со спектральной областью чувствительности фотокатода ФЭУ, а материал сцинтиллятора был прозрачен для собственного излучения. Для регистрации медленных нейтронов в сцинтиллятор добавляют или В. Для регистрации быстрых нейтронов используются водородсодержащие сцинтилляторы (см. Нейтронные детекторы ). Для спектрометрии g-квантов и электронов высокой энергии используют Nal (), обладающий большой плотностью и высоким эффективным атомным номером (см. Гамма-излучение ).

Сцинтилляционный счётчик изготавливают со сцинтилляторами разных размеров — объёмом от 1-2 мм 3 до 1-2 м 3 . Чтобы не «потерять» излученный свет, необходим хороший контакт ФЭУ со сцинтиллятором. В Сцинтилляционный счётчик небольших размеров сцинтиллятор непосредственно приклеивается к фотокатоду ФЭУ. Все остальные его стороны покрываются слоем светоотражающего вещества (например, , O 2). В Сцинтилляционный счётчик большого размера используют световоды (обычно из полированного органического стекла).

ФЭУ, предназначенные для Сцинтилляционный счётчик , должны обладать высокой эффективностью фотокатода (до 2,5%), высоким коэффициентом усиления (10 8 -10 8), малым временем собирания электронов (

10 –8 сек ) при высокой стабильности этого времени. Последнее позволяет достичь разрешающей способности по времени Сцинтилляционный счётчик £10 –9 сек. Высокий коэффициент усиления ФЭУ наряду с малым уровнем собственных шумов делает возможной регистрацию отдельных электронов, выбитых с фотокатода. Сигнал на аноде ФЭУ может достигать 100 в.

Табл. 1. — Характеристики некоторых твёрдых и жидких сцинтилляторов,

применяемых в сцинтилляционных счётчиках

Достоинства Сцинтилляционный счётчик : высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность и относительно невысокая стоимость. Благодаря этим качествам Сцинтилляционный счётчик широко применяется в ядерной физике, физике элементарных частиц и космических лучей , в промышленности (радиационный контроль), дозиметрии , радиометрии , геологии, медицине и т. д. Недостатки Сцинтилляционный счётчик : малая чувствительность к частицам низких энергий (£ 1 кэв ), невысокая разрешающая способность по энергии (см. Сцинтилляционный спектрометр ).

Для исследования заряженных частиц малых энергий ( 1). В отечественных ФЭУ диноды изготовляются либо в виде корытообразной формы (рис. 4), либо в виде жалюзи. В обоих случаях диноды располагаются в линию. Возможно также и кольцеобразное расположение динодов. ФЭУ с кольцеобразной системой динодов обладают лучшими временными характеристиками. Эмитирующим слоем динодов является слой из сурьмы и цезия или слой из специальных сплавов. Максимальное значение s для сурьмяно-цезиевых эмиттеров достигается при энергии электронов 350¸400 эв, а для сплавных эмиттеров — при 500¸550 эв. В первом случае s= 12¸14, во втором s=7¸10. В рабочих режимах ФЭУ значение sнесколько меньше. Достаточно хорошим коэффициентом вторичной эмиссии является s= 5.

Фотоэлектроны, сфокусированные на первый динод, выбивают из него вторичные электроны. Число электронов, покидающих первый динод, в несколько раз больше числа фотоэлектронов. Все они направляются на второй динод, где также выбивают вторичные электроны и т. д., от динода к диноду, число электронов увеличивается в s раз.

При прохождении всей системы динодов поток электронов возрастает на 5-7 порядков и попадает на анод — собирающий электрод ФЭУ. Если ФЭУ работает в токовом режиме, то в цепь анода включаются приборы, усиливающие и измеряющие ток. При регистрации ядерных излучений обычно необходимо измерять число импульсов, возникающих под воздействием ионизирующих частиц, а также амплитуду этих импульсов. В этих случаях в цепь анода включается сопротивление, на котором и возникает импульс напряжения.

Важной характеристикой ФЭУ является коэффициент умножения М. Если значение s для всех динодов одинаково (при полном сборе электронов на динодах), а число динодов равно n , то

A и B постоянные, u – энергия электронов. Коэффициент умножения М не равен коэффициенту усиления М» , который характеризует отношение тока на выходе ФЭУ к току, выходящему из катода

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector