Azotirovanie.ru

Инженерные системы и решения
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Приведите примеры использования тепловых действий тока

Приведите примеры использования тепловых действий тока?

Приведите примеры использования тепловых действий тока.

Электрические обогреватели, спираль в духовке, тепловая пушка и т.

Приведите примеры использования постоянных магнитов?

Приведите примеры использования постоянных магнитов.

Где используют тепловое и химическое действия тока?

Где используют тепловое и химическое действия тока.

Приведите примеры устройств использующих действие магнитного поля на ток?

Приведите примеры устройств использующих действие магнитного поля на ток.

Приведите примеры источников тепловой энергии?

Приведите примеры источников тепловой энергии.

Какие действия электрического тока позволяют судить о том если ли в цепи ток?

Какие действия электрического тока позволяют судить о том если ли в цепи ток?

Магнитное и тепловое Химическое и магнитное Любое из этих действия.

Примепы использования теплового действия тока в быту?

Примепы использования теплового действия тока в быту.

Приведите примеры тепловых явлений?

Приведите примеры тепловых явлений.

Как можно наблюдать на опыте тепловое действие тока?

Как можно наблюдать на опыте тепловое действие тока.

Приведите примеры использования магниьного действия тока?

Приведите примеры использования магниьного действия тока.

Назовите электрические устройства , работа которых основана на тепловом действии тока?

Назовите электрические устройства , работа которых основана на тепловом действии тока.

Вопрос Приведите примеры использования тепловых действий тока?, расположенный на этой странице сайта, относится к категории Физика и соответствует программе для 5 — 9 классов. Если ответ не удовлетворяет в полной мере, найдите с помощью автоматического поиска похожие вопросы, из этой же категории, или сформулируйте вопрос по-своему. Для этого ключевые фразы введите в строку поиска, нажав на кнопку, расположенную вверху страницы. Воспользуйтесь также подсказками посетителей, оставившими комментарии под вопросом.

V = 1. 5 * 10 ^ 6 Гц C = 400 * 10 ^ — 12 Ф L = ? = = = v = 1 / T T = 2 * π * √(L * C) L = 1 / ((2 * π * v)² * C) = 1 / ((2 * 3. 14 * 1. 5 * 10 ^ 6)² * 400 * 10 ^ — 12)≈2. 82 * 10 ^ — 5 Гн = = = = = = = = = = = = = = = = = = = = = = = = = = = = =..

L(длинна) = 20м p(уд. Сопрот) = 1, 1 Ом·мм² / м s(сечение) = 0, 1мм² R = p * (l / s) = 1, 1 * (20 / 0, 1) = 220 Ом. U = I * R = 1, 6 * 220 = 352 B P = U * I = 352 * 1, 6 = 563, 2 Bт (ток при соединении плиток не изменится) (сопротивление увеличится..

Правило правой рукиЕсли расположить большой палец правой руки по направлению тока, то направление обхвата проводника четырьмя пальцами покажет направлениелиний магнитной индукции.

P = W / t (W — работа эл. Тока) t = 120c W = P * t = U * I * t = 6 * 0. 6 * 120 = 432Дж.

Виды теплопередачи

В своей работе по теме «Виды теплопередачи» я проведу и объясню три эксперимента, описанные в учебнике Перышкина А.В. Физика. 8класс.

Цель работы: расширение кругозора, повышение эрудиции, развитие интереса к экспериментальной физике, умений демонстрировать и объяснять опыты, научиться работать самостоятельно.

Выдвигаемая гипотеза: внутреннюю энергию тел можно изменять путем теплопередачи. Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Опыт № 1. Теплопроводность

На примере этого опыта я хотел показать действие теплопроводности наглядно. При нормальных условиях тепло должно передаваться равномерно вследствие колебательных движений частиц.

К металлической линейке с помощью воска я прикрепил несколько кнопок. Закрепив линейку в штативе, я начал нагревать один конец линейки с помощью спиртовки. Линейка начала постепенно нагреваться, это можно доказать тем, что воск начал таять постепенно и кнопки поочерёдно начали отпадать.

Вывод из опыта № 1

Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура в следующей части линейки. При теплопроводности не происходит переноса самого вещества. Теплопроводность металла хорошая, у жидкостей невелика, у газов еще меньше.

Применения теплопроводности

  • Теплопроводность используется при плавлении металлов.
  • В электронике используют настолько плотное расположение плат, что теплоноситель проникает туда с трудом. Поэтому приходится тепло от электронных чипов отводить теплопроводностью.
  • Нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. В кухонной посуде ручки чайников и кастрюль обычно делают деревянными или пластмассовыми в связи с тем, что у дерева и пластмассы плохая теплопроводность.
  • Поверхность утюга, которой гладят металлическая, чтобы хорошо прогревалась, а вся остальная часть утюга пластмассовая, чтобы не обжечься.
  • Плохую теплопроводность газов в основном используют, как теплоизоляцию, чтобы предохранять помещения от замерзания.
  • Плохая теплопроводность газов используется в окнах. Между двумя стёклами в окне находится воздух, поэтому воздух долгое время сохраняет тепло.
  • Термос работает по такому же принципу, что и окно. Между внутренними стенками и внешними находится воздух, и тепло очень медленно уходит.
  • Теплопроводность газов используется во многих строительных материалах, например, в кирпичах. В кирпиче находятся отверстия не просто так, а для сохранения тепла. Стены состоят из двух слоёв, между которыми находится воздух, это сделано для сохранения тепла.
  • Дома в зонах вечной мерзлоты строят на сваях.
  • Тонкой полиэтиленовой плёнкой можно защищать растения от холода, потому что полиэтилен – плохой проводник тепла.
  • Материалы, не пропускающие тепло, используются при космических полётах, чтобы пилоты не замерзали.
  • Горячие предметы лучше брать сухой тряпкой, нежели мокрой, потому что воздух хуже проводит тепло, чем вода.

Теплопроводность в природе

У многих не перелётных птиц температура лапок и тела может различаться до 30 °С. Это связано с тем, что им приходится ходить по холодной земле или по снегу, чтобы не замёрзнуть, низкая температура лап сильно понижает теплоотдачу.

Образование ветра это тоже теплопроводность. Зарождаются ветра обычно около водоёмов. Днём суша нагревается быстрее чем вода, то есть над водой воздух более холодный, следовательно, его давление выше, чем у воздуха, который над сушей, и ветер начинает дуть в сторону суши. Ночью же суша остывает быстрее, чем над водой, и воздух над ней становится холоднее, чем тот, что над водой и ветер дует в сторону воды.

Мех животных обладает плохой теплопроводностью, что защищает их от перегрева и замерзания.

Снег, будучи плохим проводником тепла, предохраняет озимые посевы от вымерзания.

Внешняя температура тела у человека держится постоянной благодаря теплопроводности и её свойству, согласно которому, при взаимодействии микрочастиц они передают друг другу тепло.

Читайте так же:
Розетка подключения тепловых завес

Интересные факты о теплопроводности

Самую большую теплопроводность имеет алмаз. Его теплопроводность почти в 6 раз больше чем у меди. Если алмазную ложечку опустить в горячий чай, то вы сразу обожжётесь из-за того, что тепло дошло до конца ложки.

Теплопроводность стекла настолько мала, что вы можете взять стеклянную палочку, раскаленную посередине, за концы, и при этом даже не почувствовать тепла.

Итальянские учёные изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Лето в ней не буде жарко, а зимой – холодно. Это связано с тем, что она сшита из специального материала, не пропускающего тепло.

Опыт № 2. Излучение

В этом опыте я хотел показать способ передачи тепла без взаимодействия двух тел. Тепло должно передаваться приёмнику, а тот в свою очередь пускать его через трубку в жидкостный манометр. Вследствие нагрева воздуха в колене соединённом с жидкостным манометром, жидкость должна опуститься.

Я соединил колено жидкостного манометра с теплоприемником. Зажёг спиртовку и поднёс к ней теплоприёмник светлой стороной, но на определённое расстояние. Жидкость в колене манометра, соединённом с приёмником, немного уменьшилась. Выровняв количество жидкости в манометре, я снова поднёс теплоприемник к источнику тепла, но уже тёмной стороной. Жидкость в колене манометра, соединённом с приёмником, уменьшилась, но значительно сильнее и быстрее. Воздух в теплоприемнике нагрелся и расширился, стал давить на жидкость в колене манометра.

Вывод из опыта № 2

Энергия передавалась не теплопроводностью. Между нагретым телом и теплоприемником находился воздух – плохой проводник тепла. Следовательно, в данном случае передача энергии происходит путем излучения.

Передача тепла излучением отличается от других видов теплопередачи. Она может осуществляться даже в полном вакууме.

Важным и отличительным свойством теплового излучения является равновесный характер излучения. Это значит, что если поместить тело в теплоизолированный сосуд, то количество поглощаемой энергии всегда будет равно количеству испускаемой энергии. Часть тепла полученного излучением поглощается, а часть отражается.

Применения излучения

Способность тел по-разному поглощать энергию излучения используется на практике. Так, поверхность воздушных шаров, крылья самолетов красят в серебристой краской, чтобы они не нагревались солнцем.

Лучевой нагрев помещения специальными инфракрасными радиаторами. Такой нагрев более эффективный, чем нагрев конвекцией, так как лучи свободно проходят сквозь воздух.

Излучение используют на космических аппаратах. Так как там нет воздуха, не получится по-другому передать тепло.

Если находиться рядом с лампой накаливания можно почувствовать тепло исходящее от неё.

Солнечные батареи работают по принципу излучения. Солнце испускает мощные тепловые лучи. Солнечные батареи принимают тепловые лучи и перерабатывают их в энергию. Такие батареи хорошие приёмники для солнечных лучей, потому что их поверхность тёмного цвета, и они хорошо нагреваются. Такие батареи используются на космических станциях и спутниках.

От компьютеров и мобильных телефонов тоже исходит тепловые лучи.

Приборы ночного видения. Такие приборы сделаны из материалов способных превращать тепловые излучения в видимые. Такие приборы используются для съёмки в абсолютной темноте. Они способны улавливать различные участки, температура которых различается на сотые доли градуса.

Интересные факты

Чем более тёмное тело, тем лучше оно поглощает тепло. Зеркальные поверхности отражают тепло полученное излучением. Абсолютно черное тело – физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах.

Когда объект нагревается до высокой температуры, он начинает светиться красным цветом. В процессе дальнейшего нагревания объекта, цвет его излучения меняется, проходя через оранжевый, желтый, и дальше по спектру, чем горячее — тем меньше длина волны излучения.

Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.

Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву. Гремучие змеи и сибирские щитомордники реагируют на изменения температуры до тысячной доли градуса.

80 процентов тепла тела излучается головой человека.

Если бы не свойства излучения, то земля бы замёрзла. Так как земля постоянно излучает тепловые лучи в бесконечное пространство.

Глаза таракана чувствуют колебания температуры в сотую долю градуса.
На каждый квадратный метр земной поверхности попадает около 1 кВт тепловой энергии Солнца, что достаточно, чтобы вскипятить чайник за считанные минуты.

Опыт № 3. Конвекция

Рассмотрю явление передачи тепла с помощью конвекции. Этим опытом я хочу показать, как действует конвекция. Если опыт пройдёт успешно, то тепло должно передаваться снизу вверх.

Я налил холодную воду в колбу и добавил туда марганцовокислого калия для того, чтобы видно было процесс нагрева. Зажег спиртовку и начал подогревать колбу. Видно, как струи подкрашенной воды поднимаются вверх. Нагретые слои жидкости – менее плотные и поэтому более легкие – вытесняются более тяжелыми, холодными слоями. Холодные слои жидкости, опустившись вниз, в свою очередь нагреваются от источника тепла и вновь вытесняются менее нагретой водой. Благодаря такому движению вся вода равномерно прогревается.

Вывод из опыта № 3

При конвекции энергия переносится самими струями жидкости или газа. При конвекции происходит перенос вещества в пространстве. Для того чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу. Конвекция в твердых телах происходить не может.

Конвекция бывает двух видов: естественная – нагревание жидкости или газа и его самостоятельное движение; принудительная – смешивание жидкостей или газов с помощью насосов или вентиляторов.

Применение конвекции

Нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. Далее тепло от дна кастрюли поступает в воду и распространяется по всему объему воды путем конвекции.

Конвекция используется в конвекционных печах или микроволновках. Суть работы конвекционных печей состоит в том, что благодаря вмонтированному в заднюю стенку нагревательному элементу и вентилятору, при включении происходит принудительная циркуляция горячего воздуха. Под воздействием этой циркуляции внутреннее пространство разогревается намного быстрее и равномернее, а, значит, и воздействие на продукты будет одновременным со всех сторон.

Читайте так же:
Выключатель теплого пола merten

В холодильных устройствах также работает принцип конвекции, только в этом случае требуется заполнение внутренних отделений не теплым воздухом, а холодным.

Батареи отопления в жилых помещениях располагаются снизу, а не сверху, потому что тёплый воздух поднимается вверх и помещение прогревается везде одинаково, если бы батареи располагались у потолка, то помещение бы не нагревалось вовсе.

Батареи располагаются именно под окнами, потому что горячий воздух поднимается и распространяется по комнате, а сам уступает место холодному воздуху, поступающему из окна.

Конвекция используется в двигателях внутреннего сгорания. Если воздух не будет поступать в камеру сгорания, то горение прекратится. Из-за горения воздух там расширяется, давление уменьшается и холодный воздух поступает внутрь. К двигателю внутреннего сгорания обязательно должен поступать воздух.

Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками. Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Кроме того, стекло препятствует движению тёплого воздуха вверх, то есть осуществлению конвекции. Таким образом, теплица является ловушкой энергии.

Вентилятор фена прогоняет воздух через трубу с тонкой длинной нагревательной спиралью. Спираль нагревается проходящим по ней электрическим током. Далее происходит передача тепла от разогретой спирали окружающему её воздуху. Здесь используется явление принудительной вентиляции воздуха и явление теплопередачи.

Конвекция в природе

Конвекция участвует в образовании ветра. Если бы работала только теплопроводность, то ветров бы почти не было, но благодаря конвекции теплый воздух поднимается над сушей и уступая холодному воздуху.

Благодаря конвекции появляются облака и тучи. Так как вода испаряется, конвекция подгоняет пар высоко вверх, и там образуются облака под воздействием холодного воздуха и низкого давления.

Конвекция участвует в возникновении волн. Волны появляются благодаря ветру, а ветер в свою очередь благодаря конвекции и теплопередачи, следовательно, без конвекции волн не могло бы быть.

Стекло начинает замерзать снизу раньше, чем сверху. Это происходит потому, что холодный воздух более плотный и опускается вниз и тем самым замораживает поверхность стекла.

Листья осины дрожат даже в безветренную погоду. У листьев осины длинные, тонкие и сплющенные черенки, имеющие очень малую изгибную жесткость, поэтому листья осины чувствительны к любым, незначительным потокам воздуха. Даже в безветренную погоду, особенно в жару, над землей имеются вертикальные конвекционные потоки. Они и заставляют дрожать осину.

Интересные факты

В сильные морозы глубокие водоемы не промерзают до дна, и вода внизу имеет температуру +4 градуса Цельсия. Вода при такой температуре имеет наибольшую плотность и опускается на дно. Поэтому дальнейшая конвекция теплой воды наверх становится невозможной и вода более не остывает.

Выводы из проделанных опытов

Если изменение внутренней энергии происходит путем теплопередачи, то переход энергии от одних тел к другим осуществляется теплопроводностью, конвекцией или излучением. Когда температуры тел выравниваются, теплопередача прекращается.

Доклад на тему Виды теплопередачи в быту 8 класс

Передача тепла в бытовых условиях происходит тремя путями: за счет теплопроводности, излучения или конвекции. При теплопроводности энергия передается от более нагретой части к менее нагретой. Она характерна для твердых тел. Все металлические предметы имеют высокую теплопроводность. Поэтому ложка, вилка или нож, опущенный в горячую жидкость, постепенно прогреваются по всей длине. Именно из-за этого нельзя трогать руками без прихваток ручки металлической сковороды или кастрюли, которая стоит на огне. Они очень горячие, хотя подогревается непосредственно только дно посуды. Чтобы сделать ручки безопасными, их покрывают полимерными материалами, не способными проводить тепло.

За счет низкой теплопроводности человек не мерзнет в шерстяной одежде, шубах, куртках с синтепоном. Кирпичи, специальные утеплители (пенопласт, минеральная вата) защищают дома от промерзания, они плохо проводят тепло.

При конвекции тепло переносится потоками вещества, этот вид теплопередачи характерен для газов и жидкостей. Примером в быту служит холодильник. Хладагент перемещается по трубкам и охлаждает воздух, который в свою очередь понижает температуру помещенных в холодильник продуктов. В холодное время года батареи передают тепло воздуху, за счет которого обогревается помещение. При этом холодный воздух всегда опускается вниз, а теплый поднимается вверх. Обычный теплый или холодный ветер также является примером конвекции.

Тепло от огня (костер, печка, камин) передается греющемуся возле него человеку именно за счет конвекции. Тяга, образующаяся в дымоходе – это тоже пример конвекции. Теплый дым поднимается вверх, поскольку он легкий.

При излучении энергия передается за счет волн, чаще всего инфракрасного излучения. Так одежда темного цвета больше нагревается на солнце и в ней зимой теплее, а летом очень жарко и можно получить тепловой удар. Светлые поверхности отражают волны, поэтому они так сильно не нагреваются. В белой одежде летом не так жарко. Из-за этого свойства самолеты окрашивают в светлый цвет, иногда дома и крыши в жарких странах. Под действием излучения Солнца, проходящего сквозь стекло, нагреваются помещения.

Благодаря теплопередаче обустраивают теплицы, в том числе и маленькие для комнатных растений. Излучение Солнца проникает сквозь пленку или банку, нагревает черный грунт, но теплый воздух не может покинуть теплицу. Вот и получается парниковый эффект. Теплопередача нашла широкое применение в быту.

Виды теплопередачи в быту

Виды теплопередачи в быту

Популярные темы сообщений

Дыхательная система человека является системой органов. Они участвуют в газообмене между организмом и окружающей средой – дыхании. В состав дыхательной системы входят дыхательные пути и дыхательные органы.

Невозможно представить всемирно известный школьный праздник День знаний без букетов цветов. Многие из них выглядят эффектно благодаря гладиолусам, находящимся в их составе. В переводе с латинского языка это слово означает меч.

Павлиний глаз – один из европейских и необычайших видов бабочки, которому удалось получить такое название, за её необычные пятнышки, на её крыльях. Бабочка небольших, но и не малых размеров. У такой бабочки, размах достигает: от 4 до 5 см — самцы,

Читайте так же:
Назовите действия электрического тока а тепловое магнитное химическое

Вихревые токи Фуко — причины возникновения и применение

Каждый человек, который изучает электродинамику и другие разделы науки об электричестве, сталкивается с таким понятием, как вихревые токи. Что это такое, какие есть свойства вихревых токов, как определить их в трансформаторе? Об этом и другом далее.

Суть явления

Вихревые или токи фуко — это те, которые протекают из-за воздействия переменного магнитного поля. При этом изменяется не само поле, а проводниковое положение данного поля. То есть если будет происходить проводниковое перемещение статичного поля, то в нем все равно будет образовываться энергия.

Фуко возникают там, где изменяется переменное магнитное поля и фактически они ничем не отличаются от энергии, идущей по проводам, или вторичных электрических трансформаторных обмотков.

Определение из учебного пособия

Открытие вихревых токов

По историческим данным, впервые это явление обнаружил в начале 19 века французский исследователь Д. Араго. Специалистам известен его наглядный опыт. Вращение намагниченной стрелкой приводит в движение тонкий диск из меди, расположенный на небольшом расстоянии сверху. Природу явления раскрыл М. Фарадей, объяснивший представленный простой пример перемещения взаимодействием поля и образованных в проводнике токов. Они получили специфическое название по фамилии ученого. Фуко обнаружил нагрев тел при достаточно сильном энергетическом потенциале источника переменного тока.

Физические свойства и определение токов Фуко

К вихревым токам относятся электрические токи, которые возникают под влиянием электромагнитной индукции, появляющейся в металлической или другой проводящей среде. Эта индукция появляется под воздействием изменяющегося магнитного потока.

В свою очередь вихревые токи способствуют появлению собственных магнитных потоков. В соответствии с законом Ленца, они оказывают противодействие магнитному потоку катушки и делают его слабее. Это приводит к нагреву сердечника и бесполезным тратам электрической энергии.

Данный процесс можно рассмотреть подробнее на примере металлического сердечника. На него помещается катушка, с пропущенным переменным током. Вокруг катушки происходит образование переменного магнитного тока, пересекающего сердечник. Одновременно в нем наводится индуцированная электродвижущая сила, вызывающая, в свою очередь, вихревые токи. Их действие вызывает нагревание сердечника. При незначительном сопротивлении сердечника, наведенные токи могут иметь довольно большое значение и привести к существенному нагреву.

Природа вихревых токов

Образование ЭДС в проводниках при воздействии изменяющегося магнитного потока называют индукцией. На принципах этого явления функционируют электродвигатели, генераторы, катушки фильтров и колебательных контуров.

Что это такое токи Фуко, показано на рисунке

При определенном расположении источника переменного поля и проводника приходится учитывать отмеченные выше эффекты. При необходимости в контрольных точках можно измерить определенное напряжение. Важные особенности:

  • с учетом неравномерного распределения электрической проводимости затруднено точное определение траектории токов;
  • они будут возникать при перемещении пластины относительно постоянного магнита;
  • линии образуют замкнутые контуры в толще образца;
  • они расположены перпендикулярно вектору магнитного потока.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

Схема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Литература

  • Сивухин Д. В.: Общий курс физики, том 3. Электричество. 1977
  • Савельев И. В.: Курс общей физики, том 2. Электричество. 1970
  • Неразрушающий контроль: справочник: В 7т. Под общ. ред. В. В. Клюева. Т. 2: В 2 кн.-М.:Машиностроение, 2003.-688 с.: ил.

Полезное и вредное действие

Имеют токи фуко полезное и вредное действие. Они нагревают и плавят металлы в области вакуума и демпфера, но в то же время происходят энергопотери в области трансформаторных сердечников и генераторов из-за того, что выделяется большое количество тепла.

Полезное действие индукционных токов

Принципы вихревых токов

Для детального изучения процессов можно рассмотреть действие полей при подключении к источнику типовой катушки индукции. Переменный ток в проводнике образует силовые линии поля. Напряженность создает разницу потенциалов в соседних петлях. Движение электронов формирует вихревые токи. Они движутся по траекториям наименьшего сопротивления, которое изменяется при наличии в изделиях примесей, трещин, полостей и других дефектов.

Закон Ома

Вихревые токи – это направленное движение электронов в проводнике. Поэтому рассматриваемые явления вполне могут быть описаны базовыми физическими формулами и определениями.

Сила тока рассчитывается по закону Ома:

I = (-1/R) * (dФ/dt), где:

  • R – электрическое сопротивление;
  • Ф – магнитный поток;
  • dt – интервал времени.

Понятно, что для практических вычислений сложнее всего выяснить значение проводимости. Кроме отмеченных выше неравномерностей пути прохождения тока (различия проводника), траектория меняется под воздействием переменного поля.

Индуктивность

Следует подчеркнуть проницаемость проводника силовыми линиями электромагнитного поля. Такое воздействие при увеличении тока источника питания интенсифицирует вихревые эффекты в контрольном образце, установленном на небольшом расстоянии. Амплитуда наведенных токов и фаза определяются нагрузкой и проводимостью катушки индукции. Как и в предыдущем примере, разрывы и другие дефекты проводящего участка оказывают существенное влияние на рабочие электрические характеристики конструкции.

Магнитные поля

Зависимость от параметров материалов показана на рисунке. Цифрами отмечены:

  1. пара или диамагнетики;
  2. ферриты;
  3. железо.
Читайте так же:
Электрический двигатель тепловое действие электрического тока

Как будут возникать токи в разных образцах при равных общих условиях

Интересно. Взаимное воздействие оказывают магнитные поля, созданные катушкой и вихревыми процессами.

Дефектоскопия

Рассмотренные недостатки можно преобразовать в достоинства. По изменению вихревых токов определяют наличие дефектов при сканировании контрольных образцов. При создании измерительных приборов учитывают следующие факторы:

  • проводимость определяет силу и путь прохождения токов;
  • ровные поверхности исследовать проще;
  • вихревые процессы активизируется при уменьшении рабочей области.

Обнаружение контура дефектоскопом

С учетом целевого назначения корректируют конструкцию и размещение датчиков. Как правило, катушку устанавливают ближе к месту измерения. Корректируют форму изделия для лучшего соответствия объекту обследования.

Уменьшение вихревых токов

Чтобы успешно бороться с негативными проявлениями вихревых эффектов в электроэнергетике и других областях, пользуются отмеченными особенностями. В частности, увеличивают сопротивление проводников добавлением кремниевых и других присадок. Наборы из пластин размещают параллельно вектору магнитного потока. Обеспечивают надежную изоляцию элементов конструкции.

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Определение в трансформаторе

Полезное и негативное воздействие

Почему явление может применяться для решения практических задач, показано выше на конкретных примерах. Однако следует помнить о потерях, которые способны провоцировать вихревые токи. Для исключения ошибок необходимо тщательно проверять конструкторский расчет. Обязательно нужно оценить степень влияния переменного магнитного поля на проводящие материалы.

Видео

Принцип работы теплового двигателя

Тепловой двигатель — это устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Согласно механическую работу за счет охлаждения окружающих тел, если он не только получает теплоту от более горячего те­ла (нагревателя), но при этом отдает теплоту менее нагретому телу (холодильнику). Следовательно, на совершение работы идет не все количество теплоты, полученное от нагревателя, а только часть ее.

Таким образом, основными элементами любого теплового двигателя являются:

1) рабочее тело (газ или пар), совершающее работу;

2) нагреватель, сообщающий энергию рабочему телу;

3) холодильник, поглощающий часть энергии от рабочего те­ла.

Тепловые двигатели: принцип действия, устройство, схема

Рассмотрим тепловые двигатели, принцип действия этих механизмов. В земной коре и мировом океане запасы внутренней энергии можно считать неограниченными. Для того чтобы решать практические задачи, ее явно недостаточно. Устройство и принцип действия теплового двигателя необходимо знать для того, чтобы приводить в движение токарные станки, транспортные средства. Человек нуждается в таких устройствах, которые могут совершать полезную работу.

Тепловые двигатели, принцип действия которых мы рассмотрим, являются основными на нашей планете. Именно в них происходит превращение внутренней энергии в механический вид.

Особенности теплового двигателя

Каков принцип действия теплового двигателя? Кратко его можно представить на простом опыте. Если в пробирку налить воду, закрыть пробкой, довести до кипения, она вылетит. Причина выскакивания пробки заключается в совершении паром внутренней работы. Процесс сопровождается превращением внутренней энергии пара в кинетическую величину для пробки. Тепловые двигатели, принцип действия которых аналогичен описанному эксперименту, отличаются строением. Вместо пробирки используется металлический цилиндр. Пробка заменена поршнем, плотно прилегающим к стенкам, перемещающимся вдоль цилиндра.

Алгоритм действия

Тепловыми машинами называют механизмы, где наблюдается превращение внутренней энергии топлива в механический вид.

Для совершения двигателем полезной работы, должна быть создана разность давлений с обеих сторон поршня либо лопастей мощной турбины. Для достижения такой разности давлений происходит повышение температуры рабочего тела на тысячи градусов в сравнении с ее средним показателем в окружающей среде. Происходит подобное повышение температуры в процессе сгорания топлива.

Изменения температур

У всех современных тепловых машин выделяют рабочее тело. Им принято называть газ, совершающий в процессе расширения полезную работу. Начальную температуру, обозначаемую Т1, он приобретает в паровом котле машины или турбины. Называют этот показатель температурой нагревателя. В процессе совершения работы происходит постепенная потеря газом энергии. Это приводит к неизбежному охлаждению рабочего тела до некоторого показателя Т2. Значение температуры должно быть ниже показателя окружающей среды, иначе давление газа будет иметь меньший показатель, чем атмосферное давление, и работа двигателем не будет совершена.

Показатель Т2 называют температурой холодильника. В его качестве выступает атмосфера либо специальное устройство, необходимое для конденсации и охлаждения отработанного пара.

Некоторые факты

Итак, тепловые двигатели, принцип действия которых основывается на расширении рабочего тела, не способны отдавать для совершения работы всю внутреннюю энергию. В любом случае часть тепла будет передаваться атмосфере (холодильнику) вместе с отработанным паром либо выхлопными газами турбин или двигателей внутреннего сгорания.

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Схема его понятна и проста, доступна даже ученикам средней школы. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Изобретение тепловой машины

Первым изобретателем машины, использующей тепло, стал Сади Карно. Он разработал идеальную машину, в которой рабочим телом выступал идеальный газ. Кроме того, ученому удалось определить показатель КПД для такого устройства, используя значения температуры холодильника и нагревателя.

Карно удалось определить зависимость между реальной тепловой машиной, функционирующей на основе нагревателя, и холодильником, в качестве которого выступает воздух или конденсатор. Благодаря математической формуле, предложенной Карно для его первой идеальной тепловой машины, определяется максимальное значение КПД. Между температурой нагревателя и холодильника существует прямая связь.

Читайте так же:
Количество теплоты выделяемое проводником с током решение задач

Для того чтобы машина полноценно функционировала, значение температуры не должно быть меньше ее показателя в окружающем воздухе. При желании можно повышать температуру нагревателя, не забывая о том, что у каждого твердого тела есть определенная жаропрочность. По мере нагревания оно теряет свою упругость, а при достижении температуры плавления просто плавится.

Благодаря инновациям, которые достигнуты в современной инженерной промышленности, происходит постепенное повышение КПД теплового двигателя. Например, снижается трение между его отдельными частями, устраняются потери, возникающие из-за неполного сгорания топлива.

Двигатель внутреннего сгорания

Он представляет собой тепловую машину, где в виде рабочего тела применяют высокотемпературные газы, получаемые в процессе сгорания разного вида топлива внутри камеры. Выделяют четыре такта в работе автомобильного двигателя. Среди составных его частей назовем впускной и выпускной клапаны, камеру сгорания, поршень, цилиндр, свечу, шатун, а также маховик.

На первом этапе наблюдается плавное передвижение клапана вниз, процесс происходит благодаря заполнению камеры рабочей смесью. В конце первого такта впускной клапан закрывается. Далее поршень передвигается вверх, при этом происходит сжатие рабочей смеси. Появление искры в свече приводит к воспламенению горючей смеси. Давление, которое оказывают пары воздуха и бензина на поршень, приводят к его самопроизвольному движению вниз, поэтому такт называют «рабочим ходом». В движение приводится коленчатый вал. На четвертом этапе открывается выпускной клапан, происходит выталкивание в атмосферу отработанных газов.

Принципы действия тепловых машин

КПД тепловых машин

Каков принцип действия тепловой машины? КПД теплового двигателя зависит от величины полезной работы, совершаемой газом. С учетом того, что невозможно полностью превратить внутреннюю энергию в работу теплового двигателя, можно объяснить необратимость природных процессов и явлений. В том случае, если бы наблюдалось самопроизвольное возвращение теплоты к нагревателю от холодильника, внутренняя энергия в полном объеме превращалась бы в полезную работу посредством теплового двигателя.

Коэффициентом полезного действия называют отношение полезной работы, совершаемой тепловым двигателем, к тому количеству тепла, которое передано холодильнику. В физике принято выражать данную величину в процентах. Таков принцип действия теплового двигателя. Законы термодинамики дают возможность проводить вычисления максимального значения коэффициента полезного действия.

Как работают тепловые двигатели

Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.

Инструкция

  1. Поршневые тепловые двигатели имеют в своем составе один или несколько цилиндров, внутри которых находится поршень. В объеме цилиндра происходит расширение горячего газа. При этом поршень под воздействием газа перемещается и совершает механическую работу. Такой тепловой двигатель преобразует возвратно-поступательное движение поршневой системы во вращение вала. Для этой цели двигатель оснащается кривошипно-шатунным механизмом.
  2. К тепловым двигателям внешнего сгорания относятся паровые машины, в которых рабочее тело разогревается в момент сжигания топлива за пределами двигателя. Нагретый газ или пар под сильным давлением и при высокой температуре подается в цилиндр. Поршень при этом перемещается, а газ постепенно охлаждается, после чего давление в системе становится почти равным атмосферному.
  3. Отработавший свое газ выводится из цилиндра, в который немедленно подается очередная порция. Для возврата поршня в начальное положение применяют маховики, которые крепят на вал кривошипа. Подобные тепловые двигатели могут обеспечивать одинарное или двойное действие. В двигателях с двойным действием на один оборот вала приходится две стадии рабочего хода поршня, в установках одинарного действия поршень совершает за то же время один ход.
  4. Отличие двигателей внутреннего сгорания от описанных выше систем состоит в том, что горячий газ здесь получается при сжигании топливно-воздушной смеси непосредственно в цилиндре, а не вне его. Подвод очередной порции горючего и выведение отработанных газов производится через систему клапанов. Они позволяют подавать горючее в строго ограниченном количестве и в нужное время.
  5. Источник тепла в двигателях внутреннего сгорания – химическая энергия топливной смеси. Для данного типа теплового двигателя не нужен котел или нагреватель внешнего типа. В качестве рабочего тела здесь выступают самые разные горючие вещества, из которых самым распространенным являются бензин или дизельное топливо. К недостаткам двигателей внутреннего сгорания можно отнести их высокую чувствительность к качеству топливной смеси.
  6. Двигатели внутреннего сгорания по своей конструкции могут быть двух- и четырехтактными. Устройства первого вида проще в конструкции и не так массивны, но при одинаковой мощности требуют значительно больше топлива, чем четырехтактные. Двигатели, работа которых построена на двух тактах, чаще всего применяют в небольших мотоциклах или газонокосилках. Более серьезные машины оснащают тепловыми двигателями четырехтактного типа.

Видео по теме

Как устроены и как работают тепловые двигатели

Наша сегодняшняя встреча посвящена тепловым двигателям. Именно они приводят в движение большинство видов транспорта, позволяют получать электроэнергию, несущую нам тепло, свет и комфорт. Как устроены и каков принцип действия тепловых машин?

Понятие и виды тепловых двигателей

Тепловые двигатели — устройства, обеспечивающие превращение химической энергии топлива в механическую работу.

Осуществляется это следующим образом: расширяющийся газ давит либо на поршень, вызывая его перемещение, либо на лопасти турбины, сообщая ей вращение.

Взаимодействие газа (пара) с поршнем имеет место в паровых машинах, карбюраторных и дизельных двигателях (ДВС).

Примером действия газа, создающим вращение является работа авиационных турбореактивный двигателей.

Структурная схема работы теплового двигателя

Несмотря на отличия в их конструкции, все тепловые машины имеют нагреватель, рабочее вещество (газ или пар) и холодильник.

В нагревателе происходит сгорание топлива, в результате чего выделяется количество теплоты Q1, а сам нагреватель при этом нагревается до температуры T1. Рабочее вещество, расширяясь, совершает работу A.

Но теплота Q1 не может полностью превратится в работу. Определенная ее часть Q2 через теплопередачу от нагревшегося корпуса, выделяется в окружающую среду, условно называемую холодильником с температурой T2.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector