Самостоятельная работа № ДЖОУЛЯ-ЛЕНЦА 1. Приведите примеры использования теплового действия тока в быту. 2. В чем проявляется тепловое действие тока? При каких условиях оно наблюдается? 3. Почему при прохождении тока проводник нагревается? 4. Почему, когда по проводнику пропускают электрический ток, проводник удлиняется? 5. В чем причина короткого замыкания? К чему оно приводит в электрической цепи? 6. Последовательно соединенные медная и железная проволоки одинаковой длины и сечения подключены к аккумулятору. В какой из них выделится большее количество теплоты за одинаковое время? Средний уровень 1. Сколько теплоты выделится в электрическом нагревателе в течение 2 мин, если его сопротивление 20 Ом, а сила тока в цепи 6 А? 2. Какое количество теплоты выделится в нити электрической лампы в течение 1 ч, если лампа потребляет ток силой 1 А при напряжении 110 В? 3. В спирали электроплитки, включенной в розетку с напряжением 220 В, при силе тока 3,5 А выделилось 690 кДж теплоты. Сколько времени была включена в сеть плитка? 4. Сколько теплоты выделится за 1 ч в реостате, сопротивление которого 100 Ом, при силе тока в цепи 2 А? 5. Электрическая печь для плавки металла потребляет ток 800 А при напряжении 60 В. Сколько теплоты выделяется в печи за 1 мин? 6. Определите количество теплоты, выделяемое в проводнике током за 1,5 мин, если сила тока в цепи равна 5 А, а напряжение на концах проводника 200 В. Достаточный уровень 1. Два резистора сопротивлением 6 Ом и 10 Ом включены в цепь последовательно. Какое количество теплоты выделится в каждом резисторе за 2 мин, если напряжение на втором равно 20 В? 2. Два резистора сопротивлением 3 Ом и 6 Ом включены в цепь параллельно. В первом течет ток силой 2 А. Какое количество теплоты выделится обоими резисторами за 10 с? 3. Три проводника соединены последовательно. Первый имеет сопротивление 2 Ом, второй — 6 Ом, а в третьем за 1 мин выделилось 2,4 кДж теплоты. Каково сопротивление третьего проводника, если напряжение на втором равно 12В? 4. Два проводника соединены параллельно. В первом за 1 мин выделилось 3,6 кДж теплоты, а во втором за то же время — 1,2 кДж. Вычислите сопротивление второго проводника, если сопротивление первого равно 2 Ом. 5. Сколько теплоты выделится за 40 мин в медных проводниках с поперечным сечением 1,5 мм2 и длиной 3 м, подводящих электрический ток к плитке, если сила тока в спирали 5 А
Самостоятельная работа №22.ЗАКОН ДЖОУЛЯ-ЛЕНЦА 1. Приведите примеры использования теплового действия тока в быту. 2. В чем проявляется тепловое действие тока? При каких условиях оно наблюдается? 3. Почему при прохождении тока проводник нагревается? 4. Почему, когда по проводнику пропускают электрический ток, проводник удлиняется? 5. В чем причина короткого замыкания? К чему оно приводит в электрической цепи? 6. Последовательно соединенные медная и железная проволоки одинаковой длины и сечения подключены к аккумулятору. В какой из них выделится большее количество теплоты за одинаковое время? Средний уровень 1. Сколько теплоты выделится в электрическом нагревателе в течение 2 мин, если его сопротивление 20 Ом, а сила тока в цепи 6 А? 2. Какое количество теплоты выделится в нити электрической лампы в течение 1 ч, если лампа потребляет ток силой 1 А при напряжении 110 В? 3. В спирали электроплитки, включенной в розетку с напряжением 220 В, при силе тока 3,5 А выделилось 690 кДж теплоты. Сколько времени была включена в сеть плитка? 4. Сколько теплоты выделится за 1 ч в реостате, сопротивление которого 100 Ом, при силе тока в цепи 2 А? 5. Электрическая печь для плавки металла потребляет ток 800 А при напряжении 60 В. Сколько теплоты выделяется в печи за 1 мин? 6. Определите количество теплоты, выделяемое в проводнике током за 1,5 мин, если сила тока в цепи равна 5 А, а напряжение на концах проводника 200 В. Достаточный уровень 1. Два резистора сопротивлением 6 Ом и 10 Ом включены в цепь последовательно. Какое количество теплоты выделится в каждом резисторе за 2 мин, если напряжение на втором равно 20 В? 2. Два резистора сопротивлением 3 Ом и 6 Ом включены в цепь параллельно. В первом течет ток силой 2 А. Какое количество теплоты выделится обоими резисторами за 10 с? 3. Три проводника соединены последовательно. Первый имеет сопротивление 2 Ом, второй — 6 Ом, а в третьем за 1 мин выделилось 2,4 кДж теплоты. Каково сопротивление третьего проводника, если напряжение на втором равно 12В? 4. Два проводника соединены параллельно. В первом за 1 мин выделилось 3,6 кДж теплоты, а во втором за то же время — 1,2 кДж. Вычислите сопротивление второго проводника, если сопротивление первого равно 2 Ом. 5. Сколько теплоты выделится за 40 мин в медных проводниках с поперечным сечением 1,5 мм2 и длиной 3 м, подводящих электрический ток к плитке, если сила тока в спирали 5 А?
1) утюг, электроплита, плойка. 2) нагревании предметов. 3) увеличивается скорость молекул в проводнике, следовательно увеличивается число сооударений и его энергия, а отсюда и температура..4) нагревание даёт увеличение в размере5) перегрузка, большее напряжение, чем можно, что приводит к перегоранию приборов, порче проводки. 6) в той, у которой удельное сопротивление меньше1). потом. нет желания. решается по формуле Джоуля-Ленца2) Q = IUt = 1*110*36003)t = Q/(IU) = 690000/(220*3,5).
Также наши пользователи интересуются:
⭐⭐⭐⭐⭐ Лучший ответ на вопрос «Самостоятельная работа №22.ЗАКОН ДЖОУЛЯ-ЛЕНЦА 1. Приведите примеры использования теплового действия тока в быту. 2. В чем проявляется тепловое действие тока? При каких условиях оно наблюдается? 3. Почему при прохождении тока проводник нагревается? 4. Почему, когда по проводнику пропускают электрический ток, проводник удлиняется? 5. В чем причина короткого замыкания? К чему оно приводит в электрической цепи? 6. Последовательно соединенные медная и железная проволоки одинаковой длины и сечения подключены к аккумулятору. В какой из них выделится большее количество теплоты за одинаковое время? Средний уровень 1. Сколько теплоты выделится в электрическом нагревателе в течение 2 мин, если его сопротивление 20 Ом, а сила тока в цепи 6 А? 2. Какое количество теплоты выделится в нити электрической лампы в течение 1 ч, если лампа потребляет ток силой 1 А при напряжении 110 В? 3. В спирали электроплитки, включенной в розетку с напряжением 220 В, при силе тока 3,5 А выделилось 690 кДж теплоты. Сколько времени была включена в сеть плитка? 4. Сколько теплоты выделится за 1 ч в реостате, сопротивление которого 100 Ом, при силе тока в цепи 2 А? 5. Электрическая печь для плавки металла потребляет ток 800 А при напряжении 60 В. Сколько теплоты выделяется в печи за 1 мин? 6. Определите количество теплоты, выделяемое в проводнике током за 1,5 мин, если сила тока в цепи равна 5 А, а напряжение на концах проводника 200 В. Достаточный уровень 1. Два резистора сопротивлением 6 Ом и 10 Ом включены в цепь последовательно. Какое количество теплоты выделится в каждом резисторе за 2 мин, если напряжение на втором равно 20 В? 2. Два резистора сопротивлением 3 Ом и 6 Ом включены в цепь параллельно. В первом течет ток силой 2 А. Какое количество теплоты выделится обоими резисторами за 10 с? 3. Три проводника соединены последовательно. Первый имеет сопротивление 2 Ом, второй — 6 Ом, а в третьем за 1 мин выделилось 2,4 кДж теплоты. Каково сопротивление третьего проводника, если напряжение на втором равно 12В? 4. Два проводника соединены параллельно. В первом за 1 мин выделилось 3,6 кДж теплоты, а во втором за то же время — 1,2 кДж. Вычислите сопротивление второго проводника, если сопротивление первого равно 2 Ом. 5. Сколько теплоты выделится за 40 мин в медных проводниках с поперечным сечением 1,5 мм2 и длиной 3 м, подводящих электрический ток к плитке, если сила тока в спирали 5 А?» от пользователя АМИНА ГРИЩЕНКО в разделе Физика. Задавайте вопросы и делитесь своими знаниями.
Презентация на тему Применение теплового действия электрического тока
Презентация на тему Презентация на тему Применение теплового действия электрического тока из раздела Физика. Доклад-презентацию можно скачать по ссылке внизу страницы. Эта презентация для класса содержит 14 слайдов. Для просмотра воспользуйтесь удобным проигрывателем, если материал оказался полезным для Вас — поделитесь им с друзьями с помощью социальных кнопок и добавьте наш сайт презентаций TheSlide.ru в закладки!
- Главная
- Физика
- Применение теплового действия электрического тока
Слайды и текст этой презентации
Тема: Применение теплового действия электрического тока.
Цель: Примеры использования тепловых действий электрического тока. Расчет расхода электрической энергии..
План урока:
I.Повторение изученного
В чем проявляется тепловое действие тока? При каких условиях оно наблюдается?
— При прохождении тока по проводнику она нагревается и, удлинившись, слегка провисает.. В электрических лампах тонкая вольфрамовая проволочка нагревается током до яркого свечения.
Почему при прохождении тока проводник нагревается?
— В проводнике при протекании тока происходит превращение электрической энергии во внутреннюю, и проводник нагревается.
Почему, когда по проводнику пропускают электрический ток, проводник удлиняется?
— При нагревании проводника увеличивается потенциальная энергия взаимодействия молекул тела; расстояние между молекулами возрастает, проводник удлиняется.
4) По какой формуле можно рассчитать кол-во теплоты, выделяемой проводником с током?
— Q = I² R T
5)Как формулируется закон Джоуля-Ленца?
— Кол-во теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.
6) Две проволоки одинаковой длины и сечения – железная и медная – соединены параллельно. В какой из них выделится наибольшее кол-во теплоты?
— Т.к. кол-во теплоты, выделяемое проводником, зависит от сопротивления, а сопротивление определяется удельным сопротивлением:
Проводники соединены параллельно, то U1 = U2
Q = , чем больше R1, тем меньше Q, следовательно, на медном проводнике выделяется больше теплоты.
II.История и развитие электрического тока.
История электрического освещения началась в 1870 году с изобретения лампы накаливания, в которой свет вырабатывался в результате поступления электрического тока. Самые первые осветительные приборы, работающие на электрическом токе, появились в начале 19 века, когда было открыто электричество. Эти лампы были достаточно неудобны, но, тем не менее, их использовали при освещении улиц.
И, наконец, 12 декабря 1876 года русский инженер Павел Яблочков открыл так называемую «Электрическую свечу», в которой 2 угольные пластинки, разделенные фарфоровой вставкой, служили проводником электричества, накалявшего дугу, и служившую источником света. Лампа Яблочкова нашла широчайшее применение при освещении улиц крупных городов.
III.«Потребители электрической энергии»
а) устройство лампы накаливания;
1) Спираль
2) Стеклянный баллон
3) Цоколь лампы
4) Основание цоколя
5) Пружинящий контакт патрона
Нагревательный элемент – это основная часть всякого нагревательного электрического прибора.
Газоразрядная лампочка светиться под действием коротковолнового излучения.
б) Различные потребители электрической энергии
VI.Формулы расчета стоимости электрической энергии
А=Pt
Стоимость = А(кВт*ч) х Тариф
А работа тока
Р мощность тока
t время работы потребителя
V. КЛЛ- компактная люминесцентная лампа
Я рассчитал экономию израсходованной электроэнергии и стоимость её при использование КЛЛ в своей комнате
W= 150*12*30 =54 кВт ч – за месяц
Ст.= 54*2,81= 151,74 (руб.) оплата в месяц за лампу накаливания
W= 20*12*30 = 7,2 кВт ч если энергосберегающая лампа
Ст.=7,2*2,81=20,23 (руб.) оплата в месяц за энергосберегающую лампу
Ст.= 151,74-20,23=131,51 (руб.)
Ст.=131,51*2=263,02 (руб.) экономия так как в моей комнате 2 КЛЛ
Таким образом, получается, что энергосберегающая компактная люминесцентная лампа, несмотря на высокую стоимость, экономичнее, чем дешевая лампа накаливания.
VI. Практическое исследование
P1=100Вт=0,1кВт- лампа накаливания
P2= 20Вт = 0,02 кВт- энергосберегающая лампа
За месяц (30 дней )
Ст1. = 0,1кВт*180 час*2,81 руб= 50,58 руб.
Ст2. = 0,02кВт*180час*2,81руб.=10,16 руб.
Экономия электроэнергии 18 кВт- 3,6кВт =14,4 кВт
За год
Ст1.= 0,1 кВт*2190 час*2,81 руб.= 615,39руб.
Ст2.= 0,02 кВт*2190 час*2,81 руб. = 123,08 руб.
Экономия электроэнергии: 219 кВт – 43,8 кВт= 175 кВт
Затраты с учётом стоимости лампочек :с энергосберегающей лампочкой экономия составила 492,3 руб.
VII. Энергосбережение – одна из приоритетных задач. Это связано с дефицитом основных энергоресурсов, возрастающей стоимостью их добычи, а также с экологическими проблемами.
23 ноября 2009 года президент Российской Федерации Д.А.Медведев подписал федеральный закон № 262-Ф3 «Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты РФ»
Что проходит в нашей школе по энергосбережению?
В нашем лицеи используются энергосберегающие люминесцентные лампы
На классных часах проводятся краткий инструктаж по энергосбережению
Нагревательные приборы используются рационально
Возможности энергосбережения в школе (лицеи)
Основные возможности энергосбережения зависящие от нас, учеников – это экономия электроэнергии и тепла
Пользоваться электрическим светом, только по необходимости
В кабинетах не «гонять» компьютер с утра до вечера
Сохранять тепло помогает оклейка и утепление окон.
Следить, чтобы двери и окна были плотно закрыты
Открыть жалюзи в кабинетах иначе лампочки в кабинетах горят целый день
В коридорах горит свет во время уроков
Возможности энергосбережения в своём доме.
Заменить лампы накаливания на современные энергосберегающие лампы
Выключать неиспользуемые приборы из сети (телевизор, видеомагнитофон, музыкальный центр)
Стирать в стиральной машине при полной загрузки и правильно выбирать режим стирки
Своевременно удалять из электрочайника накипь
Не пересушивать бельё это даёт экономию при глажке
Чаще менять мешки для сбора пыли в пылесосе
Ставить холодильник в самое прохладное место на кухне
Использовать светлые шторы, обои
Чаще мыть окна, на подоконники ставить небольшое количество цветов
Не закрывать плотными шторами батареи отопления
VIII. Закрепление изученного материала. Обсудить решение нескольких задач:
Спираль электрической плиты укоротили. Как измениться количество выделяемой в ней теплоты, если плитку включить в тоже напряжение.
Какое количество теплоты выделится в течении часа в проводнике сопротивление 10 Ом при силе тока в 2 А?
Определите количество теплоты которое дает электроприбор мощностью 2 кВт за 10 мин работы.
Приведите примеры применения теплового действия тока в быту
Общеизвестным фактом является то, что сеть постоянного тока имеет ряд преимуществ перед сетью переменного тока, основные из которых:
— уменьшение потерь при передаче энергии;
— повышение уровня электробезопасности, так как минимальный порог напряжения при переменном токе равен 2В, при постоянном токе 8В;
— по ЛЭП сети постоянного тока, при отсутствии трансформаторов, можно передавать некоторые виды сигналов (таких как кабельное телевидение, телефонная связь и др.).
Но основным недостатком сети постоянного тока является невозможность трансформации напряжения, т.е. для того чтобы повысить или понизить многократное напряжение нужно сначала превратить его в переменную, а после трансформации вновь в постоянное. Этот недостаток, по мнению многих, пока преобладает над преимуществами.
Цель исследования
В последние 10-15 лет в связи с ростом количества нелинейных потребителей переменного тока напряжением до 1000 В и особенно однофазной нагрузки резко возросли потери электроэнергии при ее транспорте от источника генерации до потребителя. Существенный рост потерь происходит из-за сильного искажения формы тока, ассиметричного протекания рабочих токов в кабельных и воздушных линиях, в трансформаторах, во внутридомовых электрических сетях. Передача избыточной реактивной мощности также существенно снижает пропускную способность электрических линий и силовых трансформаторов.
Трехфазный ток по происхождению предназначен для промышленности и тяжелой индустрии, для передачи электроэнергии на дальние расстояния. Он, собственно, для этого и был изобретен. Применение постоянного тока для электроснабжения электроустановок зданий предлагается как один из альтернативных вариантов для электроснабжения сектора экономики с однофазной нагрузкой с целью существенного снижения потерь электроэнергии (по предварительным оценкам до 20%).
В основе данного предложения лежат следующие положения:
1. Схема электроснабжения на постоянном токе симметрирует однофазную нагрузку в трехфазной сети и силовых трансформаторах в результате применения в ней двенадцатипульсного выпрямителя. Наработка на отказ современной силовой электроники достаточно высокая, имеется опыт эксплуатации данного оборудования в электрофицированном транспорте и специальных объектах.
2. Постоянный ток по самой своей природе не имеет гармонических токов и реактивной составляющей электроэнергии. Это также снижает потери электроэнергии при ее передаче по линиям электропередачи, в трансформаторах, в сетях потребителя в целом до 20% .
3. Большинство техники, использующейся в быту и офисах, может работать на постоянном токе, так как в основе их работы лежит принцип выпрямления переменного тока и преобразование его в частотных преобразователях по структурам техники для применения или выполнения разных функций, например для регулирования скорости вращения двигателей, изменения звука, цвета и т.п. Кроме того, промышленностью выпускается оборудование, непосредственно работающее от постоянного тока.
4. Учет электроэнергии постоянного тока не имеет привнесенных погрешностей в отличие от переменного тока с искаженной формой.
5. Постоянный ток практически не создает в окружающей среде переменное электромагнитное поле, влияющие на физиологию человека, т.е. в электроустановках с постоянным током электромагнитная обстановка чистая и безопасная.
6. В качестве источника постоянного тока для электроснабжения жилых домов, кроме основного источника, можно использовать аккумуляторы и альтернативные источники электроэнергии. При этом нетрадиционные источники электроэнергии можно использовать напрямую без преобразования и синхронизации, что существенно упрощает и удешевляет их применение [1].
В настоящее время постоянный ток можно применять во внутренних и уличных сетях освещения [4].
Результаты исследования
Потери электроэнергии сегодня подсчитываются экономическим путем и не соотносятся с техническими причинами, порождающими эти потери. Повышение эффективности расходования энергоресурсов в основном связано с дальнейшим использованием энергосберегающей техники. В основе данного подхода вновь лежит экономический подход, когда счетчик электроэнергии показывает меньшую величину. Причина увеличения потерь в линиях, во внутридомовых сетях и трансформаторах остается неизменной, и, следовательно, использование энергоэффективной техники не решает проблему сокращения потерь, а наоборот приводит к их росту и искажению показаний приборов учета электроэнергии и измерительных трансформаторов.
На сегодняшний день нет исследований по потерям в силовых трансформаторах, связанных с асимметричным режимом их работы и протекании в них несинусоидальных токов. Также неизвестно, как растут потери электроэнергии при протекании в линиях электропередачи искаженного и ассимметричного тока нагрузки. Очевидным остается тот факт, что потери при таких режимах растут, количество генерируемой энергии лишь частично доходит до потребителя.
Переход энергетической системы сразу на постоянный ток экономически невозможен, так как для этого потребуется переоборудовать уже существующую систему с сетью переменного тока. Есть замену генераторов переменного тока на генераторы постоянного тока. Пока возможен вариант использования сети постоянного тока при автономном энергоснабжении.
При автономном бытовом электроснабжении с помощью систем генерации из возобновляемых источников энергии таких, как солнце, ветер и вода экономически эффективнее будет использовать сеть постоянного тока [5]. Основные ее преимущества в некоторых системах генерации возобновляемыми источниками энергии:
— при применении солнечной электрической системы, генерируется постоянный ток, не требуется использование инверторов, что уже уменьшает потери почти на 20%;
— применяя ветровые электрические системы, генерируется переменный ток, но возможен вариант генерации постоянного тока. При отсутствии ветра сеть питают аккумуляторы, это тот же постоянный ток, стоимость батарей занимает почти половину стоимости всей системы, то есть мы избавимся инвертора, чем уменьшим потери и тем самым количество аккумуляторных батарей для системы;
— при использовании мини-гидроэлектростанции система может генерировать как переменный, так и постоянный ток.
Главным преимуществом сети постоянного тока является возможность изготовления и использования бытовых приборов постоянного тока. При этом потребление электроэнергии можно снизить, так как сейчас во многих бытовых приборах, которые питаются от сети переменного тока, напряжение понижают и выпрямляют для импульсного трансформатора. Поэтому за счет использования низкого напряжения постоянного тока, 24, 42, 126, 220 можно уменьшить расход материалов и потери на преобразование за счет исключения необходимости использования некоторых деталей. Примером является телевизор, компьютер, освещение светодиодами (это самый экономный, безопасный и надежный вид освещения), телефоны и др. Почти все бытовые приборы могут работать в сети постоянного тока:
— холодильник — термоэлектрические холодильники (при пропускании постоянного тока через термоэлемент, состоящий из двух проводников или полупроводников, в месте их соединения выделяется или поглощается некоторое количество теплоты, пропорциональна силе тока), они имеют высокую надежность за счет отсутствия движущихся частей;
— обогреватели — резистивные, инфракрасные (обогрев инфракрасными лучами);
— отопление — использовать гелиосистемы или тепловые насосы во время монтажа систем отопления (что уменьшит потребление электроэнергии по сравнению с другими видами энергии);
— вентиляция — уже сейчас некоторые производители устанавливают преобразователи для двигателей вентилятора;
— стиральные машины — некоторые производители применяют только коллекторные двигатели, которые могут работать при постоянном токе и имеют большой пусковой момент, не требует предварительного слива воды.
Для уменьшения затрат установки системы при наличии более одного дома вблизи друг от друга, целесообразнее будет использовать одну общую систему генерации.
Выводы
Приведены преимущества только трех систем генерации с возобновляемыми источниками энергии, которые экономически эффективно использовать в сети постоянного тока, а подобных систем генерации много. Эти системы потребляют меньшее количество энергии, некоторые из них только за счет уменьшения величины потерь. Таким образом, если строить энергосистему с сетью постоянного тока в масштабе страны, то, кроме вышеперечисленной экономии, будет еще и уменьшения потерь при передаче электроэнергии, повысит целесообразность внедрения таких сетей.
Постоянный ток, поступающий от солнечных батарей и аккумуляторов, должен быть приведен к напряжению нужной, а затем преобразован в переменный. Преобразование в переменный ток выполняется, так называемыми, инверторами. В отличие от бытовых инверторов, дающих лишь приближение к синусоидальному напряжению, профессиональные модели, обслуживающие целое здание или даже комплекс строений, должны давать «чистую» синусоиду, иначе возникнут проблемы с электромагнитной совместимостью оборудования и много других проблем. Соответственно, профессиональные инверторы — дорогостоящие агрегаты, исключение которых из схемы энергоснабжения при использовании постоянного тока позволит снизить общую стоимость системы, а заодно и повысить энергоэффективность за счет удаления как минимум одной ступени преобразования. Например, профессиональный инвертор, способный длительное время выдерживать нагрузку до 12 кВт стоит порядка 100 000 руб. (здесь и далее цены приводятся по состоянию на сентябрь 2015 г.) На самом деле, при переходе на постоянный ток удаляется и другая ступень преобразования, а, именно, выпрямитель в светодиодном светильнике. В том случае, если светодиодный светильник работает в помещении, где постоянно находятся люди, тем более, где они выполняют работу, требующую сколь-нибудь значительного зрительного напряжения, надо не только выпрямить переменный ток, но и сгладить пульсации. Для этого используются электролитические конденсаторы большой емкости — дорогостоящие и при этом весьма капризные устройства. Как правило, основной причиной выхода из строя светильников является преждевременный отказ драйвера, который происходит, когда светодиоды еще не полностью выработали свой ресурс. Зачастую этот отказ связан со сглаживающими конденсаторами. Причем электролитические конденсаторы имеют неприятную особенность деградировать от времени, даже если светильник не работает, а лежит на складе.
Разница между дешевыми и дорогими светильниками заключается главным образом в уровне пульсации и надежности драйвера. При питании от постоянного тока конструкция драйвера становится более простой и надежной, в ней не присутствуют сглаживающие конденсаторы. Поэтому светильник за 1200 руб. будет работать практически так же хорошо, как и за 2200 руб. (столько стоит светильник с надежным драйвером без пульсации от известного российского бренда) Мало того, за счет уменьшения числа деталей вполне реально дополнительно снизить цену на качественный светильник.
В итоге, переход на постоянный ток позволит снизить цены на светодиодные светильники примерно в 2 раза и добиться срока службы всего светильника, равного сроку службы установленных в нем светодиодов, то есть 50 000 ч.
Приведите примеры использования теплового действия тока в быту технике
Подключение проводника к источнику питания провоцирует взаимодействие носителей зарядов с молекулярной структурой соответствующего вещества. При определенных условиях этот процесс сопровождается нагревом. Тепловое действие тока используют при создании ТЭНов, предохранителей, других устройств. Примеры расчетов и другие полезные сведения из этой публикации помогут решать различные практические задачи.
Простой эксперимент демонстрирует, как происходит повышение температуры проводника
Тепловое действие электрического тока
Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.
Рис. 1. Тепловое действие электрического тока.
Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.
Лабораторная работа №12. «Определение КПД элементного водонагревателя»
Лабораторные работы Водонагреватели Лабораторное оборудование
Лабораторная работа №12.
«Определение КПД элементного водонагревателя».
Цель работы: расчёт КПД элементного водонагревателя.
- наблюдение теплового действия электрического тока; определение КПД электрического чайника как элементного водонагревателя.
Оборудование: электрический чайник, секундомер, термометр, сосуд с водой.
Коэффициент полезного действия в общем виде определяется
. Для случая электрического чайника, в качестве элементного водонагревателя, полезным эффектом является нагревание воды, а затраченным – работа электрического тока, поэтому выражение для расчёта КПД электрического чайника принимает вид , где:
- с – удельная теплоёмкость воды (); m – масса воды в электрическом чайнике, которая определяется по плотности и объёму (), ρ=1000 кг/м3; Δt=t-t0 – изменение температуры воды в чайнике; P – мощность электрического чайника, которая определяется по паспорту; τ — время, за которое вода в электрическом чайнике нагревается до температуры кипения.
Закон Джоуля-Ленца
Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:
Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).
Рис. 2. Джоуль и Ленц.
Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:
Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:
То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.
Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:
и, подставив в формулу выше, получаем:
Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.
Тест с ответами по электротехнике
I вариант.
1. Что понимается под «электрическим током»? а) графическое изображение элементов. б) это устройство для измерения ЭДС. в) упорядоченное движение заряженных частиц в проводнике.+ г) беспорядочное движение частиц вещества. д) совокупность устройств предназначенных для использования электрического сопротивления.
2. Как называется устройство, которое состоит из двух проводников любой формы, разделенных диэлектриком а) электреты б) источник в) резисторы г) реостаты д) конденсатор+
3. Какое устройство состоит из катушки и железного сердечника внутри ее? а) трансформатор б) батарея в) аккумулятор г) реостат д) электромагнит+
4. Единица измерения потенциала точки электрического поля… а) Ватт б) Ампер в) Джоуль г) Вольт+ д) Ом
5. Что такое диполь? а) два разноименных электрических заряда, расположенных на небольшом расстоянии друг от друга.+ б) абсолютная диэлектрическая проницаемость вакуума. в) величина, равная отношению заряда одной из обкладок конденсатора к напряжению между ними. г) выстраивание диполей вдоль силовых линий электрического поля. д) устройство, состоящее из двух проводников любой формы, разделенных диэлектриком.
6. Как звучит закон Джоуля – Ленца? а) работа производимая источникам, равна произведению ЭДС источника на заряд, переносимый в цепи. б) определяет зависимость между ЭДС источника питания, с внутренним сопротивлением. в) пропорционален сопротивлению проводника в контуре алгебраической суммы. г) количество теплоты, выделяющейся в проводнике при прохождении по нему+ электрического тока, равно произведению квадрата силы тока на сопротивление проводника и время прохождения тока через проводник. д) прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению.
Использование теплового действия электричества
Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.
Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.
Рис. 3. Устройство плавкого предохранителя.
Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.
Использование теплового действия электрического тока в устройстве теплиц и инкубаторов
Электрический ток
Использование теплового действия электрического тока в устройстве теплиц и инкубаторов.
2. Тепловое действие электрического тока. Закон Джоуля-Ленца.
3. Использование теплового действия электрического тока в устройстве теплиц.
4. Использование теплового действия электрического тока в устройстве инкубаторов.
Современный мир уже немыслимо представить без электричества. Электрический ток используется человеком повсеместно. Бытовые электроприборы прочно заняли свое место в жилище человека, в промышленности, на транспорте и различных учреждениях тоже нельзя обойтись без использования электричества.
Однако сельские жители, особенно пожилого возраста по-прежнему продолжают относиться осторожно к использованию электрического тока.
Цель доклада: Показать, как можно использовать электрический ток для нужд сельского хозяйства.
Подобрать литературу по теме доклада
Анализ и обобщение источников литературы
Выступление с докладом перед аудиторией.
Тепловое действие электрического тока. Закон Джоуля-Ленца.
При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Количество тепла, выделяемого в проводнике при прохождении электрического тока, определяется законом Джоуля — Ленца. Его формулируют следующим образом. Количество выделенного тепла Q равно произведению квадрата силы тока I2, сопротивления проводника R и времени t прохождения тока через проводник:
Количество тепла, выделяющегося в проводе, пропорционально объему провода и приращению температуры, а скорость отдачи тепла в окружающее пространство пропорциональна разности температур провода и окружающей среды.
В первое время после включения цепи разность температур провода и окружающей среды мала. Только небольшая часть тепла, выделяемого током, рассеивается в окружающую среду, а большая часть тепла остается в проводе и идет на его нагревание. Этим объясняется быстрый рост температуры провода в начальной стадии нагрева.
По мере увеличения температуры провода растет разность температур провода и окружающей среды, увеличивается количество тепла, отдаваемое проводом. В связи с этим рост температуры провода все более замедляется. Наконец, при некоторой температуре устанавливается тепловое равновесие: за одинаковое время количество теплоты выделяющегося в проводе становится равным количеству теплоты выделяющемуся во внешнюю среду.
Применение и практический смысл
Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.
Перечислим некоторые из них:
- электрочайники;
- утюги;
- фены;
- варочные плиты;
- паяльники;
- сварочные аппараты и многое другое.
На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.
Рис. 3. Бытовые нагревательные приборы
Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.
Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.
Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.
Примеры действия электрического тока
Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?
ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА
При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.
ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА
Электрический ток, протекая по проводам, вызывает их нагревание.
Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.
Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.
ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА
Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.
Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.
МАГНИТНОЕ ДЕЙСТВИЕ ТОКА
На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.
Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.
Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.
МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА
Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.
В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.
Устройство гальванометра
Гальванометром прибор назвали в честь итальянского физика и врача Луиджи Гальвани. Этот прибор способен измерять маленькие электрические токи (постоянные).
На схемах прибор обозначают кружком, внутри которого расположена большая латинская буква G. На некоторых схемах внутри круга находится стрелка, направленная вертикально вверх.
- подковообразный магнит и
- находящуюся внутри него рамку, содержащую витки тонкого медного провода (рис. 8).
Рис. 8. Как утроен гальванометр
Подвижная рамка находится на оси и может вокруг нее поворачиваться.
К рамке прикреплена стрелка. Она указывает, на какой угол рамка повернулась во время протекания в ней электрического тока.
Угол поворота отмечают по делениям шкалы.
Рис. 9. Как выглядит прибор для измерения малых токов
Кто такой Луиджи Гальвани
Гальвани был одним из основателей учения об электричестве.
Обнаружил, что в местах контакта различных видов металлов возникает электрическое напряжение.
Проводил опыты с использованием железного ключа и серебряной монеты.
Изучал сокращения мышц под воздействием электричества и пришел к выводу, что мышцы управляются электрическими импульсами, поступающими по нервным волокнам из мозга.
В итальянском городе Болонья неподалеку от здания Болонского университета находится памятник Гальвани. Он находится на площади Piazza Luigi Galvani, носящей имя ученого.
В его честь, так же, назвали один из кратеров на обратной стороне Луны.
А Болонский лицей назван именем Гальвани еще с 1860-го года.
О приборах магнитоэлектрической системы
Такие приборы, содержащие проводящую рамку и небольшой магнит, называют приборами магнитоэлектрической системы. Они получили широкое распространение из-за своего сравнительно простого устройства.
Шкалы приборов можно градуировать в различных единицах измерения, в зависимости от измеряемых физических величин. На основе таких приборов изготавливают вольтметры, амперметры, омметры и т. п.
Применение электрической энергии в домашнем быту
Наряду с успехами, которые делает электрификация в Советском Союзе, с каждым годом проникая все глубже и глубже в различные отрасли народного хозяйства и захватывая новые области (транспорт, сельское хозяйство), есть одна область, которой она до настоящего времени совсем почти не коснулась, если не считать электрического освещения, — это домашний быт.
А между тем, самый беглый обзор тех преимуществ, которые дает применение электричества в домашнем быту, заставляет обратить на развитие электрификации быта самое серьезное внимание, в особенности, при проектировании и строительстве новых социалистических городов.
Электричество в домашнем быту улучшает гигиенические условия жизни и облегчает выполнение домашних работ. Поддержание в чистоте кухонь, обслуживаемых электричеством, обходится значительно дешевле — нет копоти, золы, остатков несгоревшего топлива, исключена возможность попадания в кухонные помещения вредных продуктов сгорания и светильного газа, что может иметь место в случае применения газа, а потому нет необходимости в усиленной вентиляции помещения кухонь, что приходится делать, в особенности, в больших кухнях, при массовом приготовлении пищи (в ресторанах, столовых, больницах и т. п.). Электрические плиты излучают меньше тепла, чем плиты с открытым пламенем (угольные или газовые), так как температуры нагревания, с которыми приходится иметь дело в электрических плитах, значительно ниже, чем в случае применения угольных, дровяных или газовых плит, так как эти температуры определяются исключительно потребностью в тепле того процесса, который совершается на плите (варка, печение или жарение того или иного количества определенного продукта) и не находится ни в какой зависимости от процессов горения топлива, как-то имеет место в плитах с открытым пламенем. Вследствие этого в помещении электрической кухни обычно менее высокая температура, что особенно важно летом. Равномерность температуры и возможность поддерживания ее в границах, необходимых для приготовления данного блюда, является отличительной особенностью электрической плиты, благодаря чему почти исключена возможность порчи пищи от неправильного нагревания ее и, в частности, пригорания масла.
Значительное сбережение времени и сил дает употребление для стирки белья аппарата с центрифугой.
Электрические аппараты для нагревания воды, которые, нагреваясь ночным током, утром предоставляют в распоряжение потребителя воду, подогретую до высокой температуры, ускоряют приготовление утреннего чая, кофе и т. п.; применение горячей воды ускоряет также и процесс приготовления всякого рода супов.
Вообще применение электричества в домашнем быту увеличивает степень механизации последнего, позволяет, с одной стороны, избежать применения в хозяйстве труда домашних работниц и, с другой стороны, значительно облегчает и сокращает труд женщин в домашнем быту и позволяет им посвятить освободившееся время труду на производстве или общественной работе.
Самое же важное в условиях советского Союза это то, что облегчая возможность введения общественного питания и механизацию отдельных процессов домашнего хозяйства и позволяя осуществлять их с меньшей затратой времени, сил и средств в центральных предприятиях, электрификация быта может оказать большое влияние на скорейшее внедрение в домашний быт коллективизации.
Электричество в домашнем быту за границей
Применение электричества в домашнем быту за-границей — дело не новое. В некоторых странах за последние годы оно получило значительное развитие. Наибольшее распространение применение электричества в домашнем быту получило в Швейцарии, Северо-Американских Соединенных Штатах и в Германии; менее значительное — в Норвегии, Великобритании, Австрии, Франции, Бельгии и Японии.
Швейцария. В Швейцарии из 4,5 млрд. квтч, произведенных в 1928 г. на электрических станциях, 410 млн. квтч, т. е. 9,1% использовано для домашних нужд. Интересно отметить, что потребление энергии на эту цель было более значительным, чем для целей железнодорожной тяги, которое было в том же году равно 7,1% [1]
Электрические кухни особенно значительное распространение получили среди деревенского населения, в районах, где не имеется газа [2]. Здесь не менее 200‑250 тыс. жителей пользуются электрической энергией для этой цели, потребляя в год 80‑100 млн. квтч. Одно из наиболее интересных применений электричества с точки зрения улучшения нагрузки станций в ночное время — это нагревание воды в ночное время в приборах, аккумулирующих тепло (Heißwasserspeicher), при чем потребление энергии таким прибором на одно лицо, пользующееся им, достигает от 0,5 до 1,5 квтч в день. Таких приборов в Швейцарии установлено до 10 тыс. штук и потребление ими энергии достигает 50 млн. квтч в год. Нагретая в приборах вода дальше идет на приготовление пищи и другие хозяйственные нужды. Так как около 50% общего количества калорий, потребных на приготовление пищи, идут на нагревание воды, использование ночного тока для этого процесса уменьшает на соответствующую величину нагрузку электрических станций в дневное время. Устанавливая низкие тарифы на электрическую энергию, отпускаемую ночью, электрические предприятия в Швейцарии добились за последние годы значительного улучшения использования электрических станций в ночное время. Некоторые станции в настоящее время загружены ночью почти в той же степени, что и днем. В частности, Базельская электрическая станция имеет присоединенными к своей сети 5.400 таких приборов на общую установленную мощность 10 тыс. квтч. Ночная нагрузка этой станции от 24 до 6 часов составляет 76% зимнего максимума [3]. В среднем же по всем электрическим станциям Швейцарии отношение пика ночной нагрузки к пику дневной равно в настоящее время 3:10 и отношение минимума ночной нагрузки к минимуму дневной 6:6,5 [4].
Кроме электрических кухонь и приборов для нагревания воды ночным током в Швейцарии очень распространены электрические утюги. Число их, по последним данным, достигает 400 тыс. шт. (один утюг на 10 жителей). Потребление энергии на глажение белья достигает величины 30 млн. квтч в год.
Применение электричества для отопления жилищ особого распространения в Швейцарии не получило. Обычно электрические комнатные печи служат здесь для дополнительного нагрева в зимние периоды помещений, отапливаемых обычными комнатными печами на дровах или каменном угле.
Для оплаты энергии применяются три системы тарификации [5]: простой тариф на энергию для освещения и для различных аппаратов малой мощности; двойной тариф с отношением 5:1 на энергию для освещения (более высокая ставка) и на энергию для электрификации быта (более низкая ставка) и, наконец, тройной тариф с отношением 10:2:1, соответственно для энергии на освещение, для энергии для электрификации бута вообще и для энергии на нагревание воды в аккумулирующих тепло приборах. При применении последней системы тарификации максимальный тариф применяется в вечерние часы, средний тариф в дневные часы и наиболее низкий от 12 до 13 часов и от 21 часа до 7 часов. В зависимости от сезона, часы применения отдельных ставок тарифа несколько передвигаются.
Снижение цены на энергию, идущую на нагревание воды в приборах, аккумулирующих тепло, — главное средство, которое позволило швейцарским обществам, распределяющим электрическую энергию, значительно увеличить продажу энергии мелким потребителям. Другой метод, применявшийся в то же время и также оказавшийся очень эффективным, состоял в широкой пропаганде идеи электрификации домашнего быта путем устройства соответствующих лекций, выставок и консультаций по вопросам применения электрической энергии в домашнем быту.
Северо-Американские Соединенные Штаты. Северо-Американские Соединенные Штаты — одна из наиболее электрифицированных стран мира. Для того, чтобы составить себе представление о развитии здесь электрификации, достаточно привести несколько цифр из отчетных данных за 1928 г. о работе электрических станций [6].
Общая установленная мощность машин на электрических станциях САСШ на 1‑е января 1929 г. достигала величины 31,8 млн. кВт; общая выработка электрической энергии на электрических станциях в 1928 г. была равна 83,1 млрд квтч (не считая 1.600 млрд квтч импортированных из Канады), что на душу населения в 1928 г. составило около 700 квтч. Число электрифицированных жилищ в городах и сельских местностях САСШ к началу 1929 г. было равно 19.077 тыс. и число жителей в них 81 млн. чел., что составляет 67% всего населения САСШ. К концу 1929 г. число электрифицированных жилищ увеличилось до 19.500 тыс. Годовое потребление электрической энергии в 1928 г. достигло 69.700 млрд. квтч, при чем на электрические приборы, применяемые в домашнем быту, не считая электрического освещения, израсходовано 3.404 млрд. квтч т. е. около 4,9%.
Данные о числе присоединенных приборов и потребленной ими электрической энергии таковы [7]: