Нагревание проводников электрическим током. Закон Джоуля—Ленца
Нагревание проводников электрическим током. Закон Джоуля—Ленца
Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.
Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц “застрял” с расчётами, так как параметры его смоделированной цепи “источник энергии – проводник – потребитель энергии” сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.
При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало – невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?
Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший “нагреватель” – стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся – тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.
Закон джоуля Ленца формула и определение
Согласно закону джоуля Ленца, электрический ток, проходящий по проводнику, сопровождается количеством теплоты, прямо пропорциональным квадрату тока и сопротивлению, а также времени течения этого тока по проводнику.
В виде формулы закон Джоуля-Ленца выражается следующим образом: Q = I 2 Rt, в которой Q отображает количество выделенной теплоты, I – силу тока, R – сопротивление проводника, t – период времени. Величина “к” представляет собой тепловой эквивалент работы и применяется в тех случаях, когда количество теплоты измеряется в калориях, сила тока – в амперах, сопротивление – в Омах, а время – в секундах. Численное значение величины к составляет 0,24, что соответствует току в 1 ампер, который при сопротивлении проводника в 1 Ом, выделяет в течение 1 секунды количество теплоты, равное 0,24 ккал. Поэтому для расчетов количества выделенной теплоты в калориях применяется формула Q = 0,24I 2 Rt.
При использовании системы единиц СИ измерение количества теплоты производится в джоулях, поэтому величина “к”, применительно к закону Джоуля-Ленца, будет равна 1, а формула будет выглядеть: Q = I 2 Rt. В соответствии с законом Ома I = U/R. Если это значение силы тока подставить в основную формулу, она приобретет следующий вид: Q = (U 2 /R)t.
Основная формула Q = I 2 Rt очень удобна для использования при расчетах количества теплоты, которое выделяется в случае последовательного соединения. Сила тока во всех проводниках будет одинаковая. При последовательном соединении сразу нескольких проводников, каждый из них выделит столько теплоты, которое будет пропорционально сопротивлению проводника. Если последовательно соединить три одинаковые проволочки из меди, железа и никелина, то максимальное количество теплоты будет выделено последней. Это связано с наибольшим удельным сопротивлением никелина и более сильным нагревом этой проволочки.
Закон Джоуля-Ленца
В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.
Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:
Работа и мощность тока
Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U — разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде
Закон Джоуля-Ленца
Рассмотрим практически важный случай, когда основным действием тока является тепловое действие. В таком случае согласно закону сохранения энергии количество теплоты, выделившееся
? 1. Докажите, что количество теплоты Q, выделившееся в проводнике с током, выражается также формулами
Q = I2Rt, (2) Q = (U2/R)t. (3)
Подсказка. Воспользуйтесь формулой (1) и законом Ома для участка цепи.
Мы вывели формулы (1) — (3), используя закон сохранения энергии, но исторически соотношение Q = I2Rt независимо друг от друга установили на опыте российский ученый Эмилий Христианович Ленц и английский ученый Дж. Джоуль за несколько лет до открытия закона сохранения энергии. Закон Джоуля — Ленца: количество теплоты,
Применение закона Джоуля — Ленца к последовательно и параллельно соединенным проводникам
Выясним, в каких случаях для сравнения количества теплоты, выделившейся в проводниках, удобнее пользоваться формулой (2), а в каких случаях — формулой (3).
Формулу Q = I2Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).
Из этой формулы видно, что при последовательном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого больше. При этом
Формулу Q = (U2/R)t удобно применять, когда напряжение на концах проводников одинаково, то есть когда они соединены параллельно (рис. 58.2).
Из этой формулы видно, что при параллельном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого меньше. При этом
? 2. При последовательном соединении в первом проводнике выделилось в 3 раза большее количество теплоты, чем во втором. В каком проводнике выделится большее количество теплоты при их параллельном соединении? Во сколько раз большее?
? 3. Имеются два проводника сопротивлением R1 = 1 Ом и R2 = 2 Ом. Их подключают к источнику напряжения 6 В. Какое количество теплоты выделится за 10 с, если: а) подключить только первый проводник? б) подключить только второй проводник? в) подключить оба проводника последовательно?
г) подключить оба проводника параллельно? д) чему равно отношение значений количества теплоты Q1/Q2, если проводники включены последовательно? Параллельно?
Поставим опыт Будем включать в сеть две лампы накаливания с разными сопротивлениями нити накала параллельно и последовательно (рис. 58.3, а, б).
Мы увидим, что при параллельном соединении ламп ярче светит одна лампа, а при последовательном — другая.
? 4. У какой из ламп (1 или 2) сопротивление больше? Поясните ваш ответ.
? 5. Объясните, почему при последовательном соединении накал нити каждой лампы меньше, чем накал этой же лампы при параллельном соединении.
? 6. Почему при включении лампы в осветительную сеть нить накала раскаляется добела, а последовательно соединенные в нею соединительные провода почти не нагреваются?
2. Мощность тока
Мощностью тока P называют отношение работы тока A к промежутку времени t, в течение которого эта работа совершена:
Единица мощности — ватт (Вт). Мощность тока равна Вт, если совершаемая током за 1 с работа равна 1 Дж. Часто используют производные единицы, например киловатт (кВт).
? 7. Докажите, что мощность тока можно выразить формулами
P = IU, (5) P = I2R, (6) P = U2/R. (7)
Подсказка. Воспользуйтесь формулой (4) и законом Ома для участка цепи.
? 8. Какой из формул (5) — (7) удобнее пользоваться при сравнении мощности тока: а) в последовательно соединенных проводниках? б) в параллельно соединенных проводниках?
? 9. Имеются проводники сопротивлением R1 и R2. Объясните, почему при последовательном соединении этих проводников
А при параллельном
? 10. Сопротивление первого резистора 100 Ом, а второго — 400 Ом. В каком резисторе мощность тока будет больше и во сколько раз больше, если включить их в цепь с заданным напряжением: а) последовательно? б) параллельно?
в) Чему будет равна мощность тока в каждом резисторе при параллельном соединении, если напряжение в цепи 200 В? г) Чему при том же напряжении цепи равна суммарная мощность тока в двух резисторах, если они соединены: последовательно? параллельно?
Мощностью электроприбора называют мощность тока в этом приборе. Так, мощность электрочайника — примерно 2 кВт.
Обычно мощность прибора указывают на самом приборе.
Ниже приведены примерные значения мощности некоторых приборов. Лампа карманного фонарика: около 1 Вт Лампы осветительные энергосберегающие: 9-20 Вт
Лампы накаливания осветительные: 25-150 Вт Электронагреватель: 200-1000 Вт Электрочайник: до 2000 Вт
Все электроприборы в квартире включаются параллельно, поэтому напряжение на них одинакова.
? 11. В сеть напряжением 220 В включен электрочайник мощностью 2 кВт. а) Чему равно сопротивление нагревательного элемента в рабочем режиме (когда чайник включен)?
б) Чему равна при этом сила тока?
? 12. На цоколе первой лампы написано «40 Вт», а на цоколе второй — «100 Вт». Это — значения мощности ламп в рабочем режиме (при раскаленной нити накала).
а) Чему равно сопротивление нити накала каждой лампы в рабочем режиме, если напряжение в цепи 220 В? б) Какая из ламп будет светить ярче, если соединить эти лампы последовательно и подключить к той же сети? Будет ли эта лампа светить так же ярко, как и при параллельном подключении?
? 13. В электронагревателе имеются два нагревательных элемента сопротивлением R1 и R2, причем R1 > R2. Используя переключатель, элементы нагревателя можно включать в сеть по отдельности, а также последовательно или параллельно.
Напряжение в сети равно U. а) При каком включении элементов мощность нагревателя будет максимальной? Чему она при этом будет равна? б) При каком включении элементов мощность нагревателя будет минимальной (но не равной нулю)?
Чему она при этом будет равна? в) Чему равно отношение R1/R2, если максимальная мощность в 4,5 раза больше минимальной?
Дополнительные вопросы и задания
14. На рисунке 58.4 изображена электрическая схема участка цепи, состоящего из четырех одинаковых резисторов. Напряжение на всем участке цепи постоянно. Примите, что зависимостью сопротивления резистора от температуры можно пренебречь. а) На каком резисторе напряжение самое большое? самое маленькое? б) В каком резисторе сила тока самая большая? самая маленькая?
в) В каком резисторе выделяется самое большое количество теплоты? самое маленькое количество теплоты? г) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если резистор 1 замкнуть накоротко (то есть заменить проводником с очень малым сопротивлением)? д) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если отсоединить провод от резистора 1 (то есть заменить этот резистор проводником с очень большим сопротивлением)?
Работа и мощность электрической цепи.
Работа является мерой превращения одного вида энергии в другой.
Ватт-секунда – эта работа электрического тока величиной 1А при напряжении 1В в течение 1с.
1 Ватт ∙ час [Вт ∙ ч] = 3600 Вт ∙ ч = 3600 Дж
1 кВт ∙ ч = 1000 Вт ∙ ч = 3600 000 Дж
Работа электрического тока в одну секунду называется мощностью электрического тока, она характеризует интенсивность работы, совершенной током. За единицу мощности принят Ватт [Вт].
; из закона Ома ,
Ватт – мощность, которую развивает при
1 кВт = 1000 Вт 1 МВт = 1000 000 Вт
Полной называется мощность, развиваемая источником тока , а полезной – мощность, расходуемая во внешней цепи потребителем .
Отношение полезной мощности к полной мощности, развиваемой источником тока, называется коэффициентом полезного действия (КПД), обозначается — «эта».
Тепловое действие тока.При прохождении электрического тока по проводнику в результате столкновения электронов с его атомами проводник нагревается.
Закон Джоуля – Ленца.Количество выделенного тепла прямо пропорционально квадрату величины тока, сопротивлению проводника и времени прохождения тока через проводник.
Эта зависимость установлена в 1841 г. Английским физиком Джоулем и несколько позднее (в 1844 г.) русским академиком Ленцем.
Тепловое действие тока применяют: лампы накаливания, нагревательные приборы, электросварка, тепловые реле (биметаллические пластины).
Каждый проводник в зависимости от условий, в которых он находится, может пропустить через себя, не перегреваясь, ток, не превышающий некоторую допустимую величину. Эта величина характеризуется допустимой плотностью тока , т. е. величиной тока I приходящегося на 1 мм площади поперечного сечения s проводника.
— допускаемая плотность тока I на площади поперечного сечения.
— обмотка электрических машин
— нить электрической лампочки
При неплотном электрическом контакте и плохом соединении проводников R вместе их соединения (так называемое переходное сопротивление электрического контакта) сильно возрастает, и здесь происходит усиленное выделение тепла. В итоге это может привести к перегоранию контакта и разрыву электрической цепи.
Вопросы для самоконтроля:
1. Как осуществляется последовательное соединение проводников? Какие действуют законы в данной цепи?
2. Как осуществляется параллельное соединение проводников? Какие действуют законы в данной цепи?
3. Как осуществляется смешанное соединение потребителей?
4. Как определить работу и мощность электрического тока? В каких единицах измеряется мощность и работа?
5. Что такое коэффициент полезного действия?
6. Сформулируйте закон Джоуля-Ленца.
7. Что такое плотность тока и переходное сопротивление?
8. Что такое электрическое поле? Чем характеризуется электрическое поле?
9.Что называется электрическим потенциалом? Разностью потенциалов? В каких единицах измеряется?
10. Что такое ЭДС, и в каких единицах она измеряется?
11. Что такое электрический ток, и в каких единицах он измеряется?
12. Что называется электрическим сопротивлением? От чего зависит сопротивление проводников?
13. Как устроен атом вещества?
14.Что называется проводником и диэлектриком?
15. Как взаимодействуют электрические заряды? Закон Кулона.
16. Что такое электрическое поле? Чем характеризуется электрическое поле?
17. Что такое электрический ток, и в каких единицах он измеряется?
18. Что называется электрическим сопротивлением? От чего зависит сопротивление проводников?
19.Как можно увеличить сопротивление проводника?
20. Как образуется электрическая цепь, и из каких частей она состоит?
21. Сформулируйте закон Ома для электрической цепи и отдельного участка?
22. Что такое падение напряжения и как оно определяется?
23. Охарактеризуйте режимы работы генератора постоянного тока?
24. Что называется коротким замыканием, каковы его последствия?
25.Как формулируется первый закон Кирхгофа?
26. Как формулируется второй закон Кирхгофа?
Дата добавления: 2017-11-21 ; просмотров: 4452 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Конспект урока «Работа и мощность тока. Тепловое действие тока» по физике
Работа тока . Рассмотрим произвольный участок цепи. Это может быть однородный проводник, например нить лам пы накаливания, обмотка электродвигателя и др. Пусть за время Δ t через поперечное сечение проводника проходит за ряд Δ q .
Тогда электрическое поле совершит работу А= Δ q U .
Так как сила тока I = , то Δ q = IΔt , то работа равна: A = IU Δt
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.
Согласно закону сохранения энергии эта работа должна быть равна изменению энергии рассматриваемого участка цепи. Поэтому энергия, выделяемая на данном участке цепи за время Δ t , равна работе тока A = IU Δt
В случае, если на участке цепи не совершается механическая работа и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.
Нагревание проводника происходит следующим образом. Электрическое поле ускоряет электроны. После столкновения с ионами кристаллической решетки они передают ионам свою энергию. В результате энергия беспорядочного движения ионов около положений равновесия возрастает. Это и означает увеличение внутренней энергии. Температура проводника при этом повышается, и он начинает передавать теплоту окружающим телам. Спустя небольшое время после замыкания цепи процесс устанавливается, и температура перестает изменяться со временем. К проводнику за счет работы электрического поля непрерывно поступает энергия. Но его внутренняя энергия остается неизменной, так как проводник передает окружающим телам количество теплоты, равное работе тока. Таким образом, формула A = IU Δt для работы тока определяет количество теплоты, передаваемое проводником другим телам.
Если в формуле A = IU Δt выразить либо напряжение че рез силу тока, либо силу тока через напряжение с помо щью закона Ома для участка цепи, то получим три эк вивалентные формулы: A = IU Δt = I 2 R Δt = ∙ Δt = Q
Формулой A = I 2 R Δt удобно пользоваться для последо вательного соединения проводников, так как сила тока в этом случае одинакова во всех проводниках. При парал лельном соединении удобна формула А= ∙ Δt , так как на пряжение на всех проводниках одинаково.
Закон Джоуля—Ленца: количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику: Q =I 2 RΔt
Мы получили этот закон с помощью рассуждений, основанных на законе сохранения энергии. Эта формула позволяет вычислить количество теплоты, выделяемое на любом участке цепи, содержащем какие угодно проводники.
Мощность тока. Любой электрический прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока особое значение имеет понятие мощность тока. Мощность тока равна отношению работы тока за время Δt к этому интервалу времени.
Согласно этому определению Р = = IU . Это выражение для мощности можно переписать в нескольких эквивалентных формах, если использовать закон Ома для участка цепи: Р = IU = I 2 R =
Основные формулы для решения задач
A=IUΔt=I 2 RΔt=Δt=Q
Экзаменационные вопросы
33. Какую работу совершили силы электростатического поля при перемещении 2 Кл из точки с потенциалом 20 В в точку с потенциалом 0 В? А. 40 Дж. Б. 20 Дж. В. 10 Дж. Г. 0 Дж.
34. Какая из приведенных ниже формул применяется для вычисления мощности электрического то ка?
А . I = ; Б . I = ; В .IUΔt; Г . P = UI ; Д. ρ = ρ (1+α t ).
35. При перемещении электрического заряда в электрическом поле по любой замкнутой тр аектории работа сил электрического поля оказалась равной нулю. Какое это было поле?
А. Это могло быть любое поле. Б. Это могло быть только поле точечного заряда. В. Это могло быть только однородное электрическое поле. Г. Это могло быть только поле двух равных по модулю и пр отивоположных по знаку двух точечных зарядов. Д. Такого поля быть не может.
36 . Какая из приведенных ниже формул применяется для вычисления работы электрического тока?
А. ; Б. ; В. IUΔt ; Г. UI ; Д. ρ (1+α t ).
37 . При перемещении заряда 2 Кл в электрическом поле силы, действующие со стороны этого поля, совершили работу 8 Дж. Чему равна разность потенциалов между начальной и конечной точками пути?
А. 16 В. Б. 4 В. В. 0,25 В. Г. По условию задачи разность определить нельзя. Д. Среди ответов А — Г нет правильного.
38. При перемещении электрического заряда q между точками с разностью потенциалов 8 В силы, действующие на заряд со стороны электрического поля, совершили работу 4 Дж. Чему равен заряд q ?
А. По условию задачи заряд определить невозможно. Б. 32 Кл. В. 2 Кл. Г. 0,5 Кл. Д.Среди ответов А-Г правильного нет.
1. Мощность электрического утюга 1 кВт. Каково его сопротивление при включении в сеть с напряжением 220 В?
2. Сопротивление резистора 440 Ом, напряжение в цепи равно 220 В. Определить мощность тока.
3. По проводнику сопротивлением 20 Ом за 5 минут прошло количество электричества 300 Кл. Вычислить работу тока за это время.
4. В сеть с напряжением 220В включены параллельно одинаковые лампочки с сопротивлением 484 Ом каждая. Сколько лампочек включили в сеть, если они потребляют мощность 800 Вт?
5. Гальванический элемент с ЭДС 6 В и внутренним сопротивлением 1 Ом замкнут на сопротивление 5 Ом. Какое количество теплоты выделится на проводнике и внутреннем сопротивлении за 10 с?
6. ЭДС источника электрической энергии равна 100 В. При внешнем сопротивлении 49 Ом сила тока в цепи 2 А. Найти падение напряжения внутри источника и его внутреннее сопротивление.
7. Аккумулятор с ЭДС 6 В и внутренним сопротивлением 0,1 Ом питает внешнюю цепь сопротивлением 12,4 Ом. Какое количество теплоты выделится за время 10 минут во всей цепи?
8. На каком из сопротивлений будет выделяться наибольшее количество теплоты
в единицу времени, если R 1=4 Ом ; R 2=2 Ом ; R 3=1 Ом ; R 4=2 Ом?
9. При ремонте электроплитки её спираль укоротили на 0,2 первоначальной длины.
Как при этом изменится мощность плитки?
Дополнительные задачи
№ 1.Определить сопротивление электрического паяльника мощностью 300 Вт, включенного в сеть напряжением 220 В.
№ 2. По проводнику сопротивлением 20 Ом за 5 мин прошло количество электричества 300 Кл. Вычислить работу тока за это время.
№ 3. Сколько электронов проходит каждую секунду через поперечное сечение вольфрамовой нити лампочки мощностью 70 Вт, включенной в сеть с напряжением 220 В?
№ 4. Определить стоимость электрической энергии, потребляемой лампой мощностью 100 Вт за 200 ч горения
№ 5. Какое сопротивление нужно включить в сеть с напряжением 220 В, чтобы в нем за 10 минут выделилось 66 кДж теплоты?
Работа и мощность тока
Электрический ток и его роль в снабжении человечества энергией. Работа электрического поля по передвижению свободных зарядов в проводниках. Характеристика разных участков цепи, по которой идет ток и их особенности. Измерение и сущность мощности тока.
Рубрика | Физика и энергетика |
Вид | эссе |
Язык | русский |
Дата добавления | 11.10.2012 |
Размер файла | 119,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Условия, необходимые для существования электрического тока. Достоинства и недостатки параллельного соединения проводников. Единица силы тока. Работа электрического тока в замкнутой электрической цепи. Закон Ома для участка цепи. Химическое действие тока.
презентация [398,2 K], добавлен 07.02.2015
Причины электрического тока. Закон Ома для неоднородного участка цепи. Закон Ома в дифференциальной форме. Работа и мощность. Закон Джоуля–Ленца. Плотность тока, уравнение непрерывности. КПД источника тока. Распределение напряженности и потенциала.
презентация [991,4 K], добавлен 13.02.2016
Сущность магнетизма, поле прямого бесконечно длинного тока. Форма правильных окружностей, описываемых силовыми линиями электрического поля элемента тока. Структура латентного поля тока. Закон Био-Савара, получение «магнитного» поля из электрического.
реферат [2,2 M], добавлен 04.09.2013
Анализ направленного движения свободных заряженных частиц под действием электрического поля. Обзор основных величин, описывающих процесс прохождения тока по проводнику. Исследование источников и теплового действия тока, способов соединения сопротивлений.
презентация [430,0 K], добавлен 05.02.2012
Характеристика электрического поля как вида материи. Исследование особенностей проводников, полупроводников и диэлектриков. Движение тока в электрической цепи. Изучение законов Ома, Джоуля-Ленца и Кирхгофа. Изоляционные материалы. Электродвижущая сила.
презентация [4,5 M], добавлен 19.02.2014
Понятие электрического тока, выбор его направления, действие и сила. Движение частиц в проводнике, его свойства. Электрические цепи и виды соединений. Закон Джоуля-Ленца о количестве теплоты, выделяемое проводником, закон Ома о силе тока на участке цепи.
презентация [194,6 K], добавлен 15.05.2009
Получение направленного движения зарядов. Признаки электрического тока. Движение заряженных частиц в проводнике. Электрический ток в металлах. Действие, сила, плотность тока. Постоянный и переменный ток. Определение природы носителей тока в металлах.