Azotirovanie.ru

Инженерные системы и решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Счетчик импульсов СИ20

Счетчик импульсов СИ20

Счетчик импульсов СИ20

Счетчик импульсов ОВЕН СИ20 входит в состав новой линейки счетчиков импульсов, отличающейся повышенной устойчивостью к различным видам электромагнитных помех. Приборы данной линейки способны работать и при отрицательных температурах до -20 °С .

К преимуществам данного счетчика можно отнести универсальный источник питания, что позволят запитывать прибор как от сети 220В, так и от сети постоянного тока 24В.

Назначение

Данный прибор был специально адаптирован для управления системами дозирования жидких сред, намоточных установок (кабель, провод, экструзионная пленка и т.д.).

Микропроцессорный счетчик импульсов СИ20 может использоваться для подсчета количества продукции на транспортере или жидкости, длины наматываемого кабеля или экструзионной пленки, суммарного количества изделий и т.п.

Цифровой счетчик импульсов будет выпускается в корпусах 3-х типов: настенном Н и щитовых Щ1, Щ2.

Основные функциональные возможности

  • ПРЯМОЙ СЧЕТ ИМПУЛЬСОВ, поступающих от подключенных к прибору датчика
  • ПЕРЕВОД КОЛИЧЕСТВА ИМПУЛЬСОВ В РЕАЛЬНЫЕ ЕДИНИЦЫ ИЗМЕРЕНИЯ продукции
  • ВЫБОР ПОЗИЦИИ ДЕСЯТИЧНОЙ ТОЧКИ
  • КОЭФФИЦИЕНТ МАШТАБИРОВАНИЯ
  • ДВА РЕЖИМА РАБОТЫ ВЫХОДНЫХ УСТРОЙСТВ: «ДОЗАТОР», «СИГНАЛИЗАТОР»
  • ЧЕТЫРЫЕ ДИСКРЕТНЫХ ВХОДА для организации счета и реализации функций стартстоп, блокировка, сброс
  • УНИВЕРСАЛЬНЫЕ ВХОДЫ, позволяющие работать с датчиками PNPNPN типа, сухим контактом
  • ВСТРОЕННЫЙ ИСТОЧНИК ПИТАНИЯ датчиков –24В
  • УПРАВЛЕНИЕ НАГРУЗКОЙ с помощью ОДНОГО выходного устройства
  • СОХРАНЕНИЕ РЕЗУЛЬТАТОВ СЧЕТА при отключении питания
  • ПРОГРАММИРОВАНИЕ С КНОПОК на лицевой панели
  • ПОЛНОЕ СООТВЕТСТВИЕ ТРЕБОВАНИЯМ ГОСТ Р 51522 (МЭК 61326) по электромагнитной совместимости для оборудования класса А

Технические характеристики:

Диапазон напряжений питания постоянного тока СИ20-У.Х.Х, В

Диапазон напряжений питания переменного тока СИ20-У.Х.Х, В, частота, Гц

Максимальная потребляемая мощность, не более, ВА

Частота входных импульсов

Длительность входных импульсов, мкс, не менее

Диапазон значения множителя

Частота входного фильтра

Номинальное напряжение питания датчиков, В

Нестабильность напряжения питания датчиков, %

Максимальный ток нагрузки источника питания датчиков,

Количество разрядов цифрового индикатора

Габаритные размеры прибора:

Степень защиты корпуса

Масса, кг, не более

Средний срок службы, лет, не менее

Межповерочный интервал, лет

Условия эксплуатации счетчика импульсов ОВЕН СИ20

  • Закрытые взрывобезопасные помещения без агрессивных паров и газов
  • Температура окружающего воздуха от -20 до +70 °С
  • Верхней предел относительной влажности 95% при 35 °С без конденсации влаги
  • Атмосферное давление от 84…106,7 кПа

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует группе исполнения N2 по ГОСТ 12997-84.

По устойчивости к климатическим воздействиям при эксплуатации прибор соответствует группе исполнения В4 по ГОСТ 12997-84.

Счетчики импульсов15

CT-01быстрый просмотр
JJ-126 12 VDCбыстрый просмотр

220-110В» /> быстрый просмотр

РСИ-П4-10 АСDC24-240В УХЛ4, Счетчик импульсов

СИ-15 48Вбыстрый просмотр
СИ-206 110Вбыстрый просмотр

FX4S-1P4, Счетчик импульсов

CLI-01, Счетчик импульсовбыстрый просмотр
CLI-02, Счетчик импульсовбыстрый просмотр
CLI-11T/230, Счетчик импульсовбыстрый просмотр

HK-30 R 12-36VDC (IP-67)

HKJA51 (0.5+2.0mm) (счетный механизм)

HKJA61 (0.5+2.0mm) (счетный механизм)

СИ10-24.Щ3, Простой счетчик импульсовбыстрый просмотр

СИ10-24Щ.3, Простой счетчик импульсов

Счётчики импульсов – приборы, с помощью которых подсчитывают количество импульсов, поступающих на входы устройства с датчиков, а также пересчитывают эти импульсы в конкретную физическую единицу измерения посредством умножения на определённый множитель (метр, литр, штука, килограмм и т. д.). Ещё с помощью таких устройств подсчитывают суммарную выработку за определённый промежуток времени, управляют исполнительным оборудованием путём подачи определённых сигналов на один или несколько дискретных выходов (обычно в качестве дискретных выходов используют реле или оптопару).

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Алматы, Архангельск, Астрахань, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курган, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Читайте так же:
Схема жучок счетчик меркурий

Товары из группы «Счетчики импульсов» вы можете купить оптом и в розницу.

Разработка универсального счетчика импульсов

В производстве и на конвейерных линиях часто возникает задача подсчета продукции или операций оборудования. Во многих случаях станки уже имеют комплекс аппаратных и программных средств, позволяющих получить данную информацию. Также существуют специализированные счетчики, адаптированные под конкретную задачу или оборудование. Но при наличии разнотипного оборудования затраты на программное сопряжение становятся существенными. Хотелось бы иметь простой универсальный счетчик, который легко адаптируется под разные задачи и передает события на сервер для дальнейшей аналитики. Об опыте разработке такого счетчика и пойдет речь в данной статье.

Оптические датчики и их особенности

Чаще всего при подсчете продукции или отслеживании механического перемещения внешним датчиком используются оптические датчики барьерного, рефлекторного или диффузионного типа.

Рисунок 1. Типы датчиков (И - источник, П - приемник, О - объект).

Рисунок 1. Типы датчиков (И — источник, П — приемник, О — объект).

Принцип работы барьерного датчика очень простой — имеются разнесенные в пространстве источник света и приемник, между ними проходят объекты, тем самым закрывая источник света от приемника. Полученный сигнал с фотоприемника коррелирует с прохождением объекта и практически не требует обработки. Однако системы с таким датчиком не лишены недостатков — обычно это несколько модулей, требуется прокладка кабелей и юстировка оптической системы. В случае рефлекторного и диффузионного типа датчиков установка проще, так как источник и приемник находятся в одном корпусе. Рефлекторный датчик принимает отраженный от объекта или специальной отражающей метки свет, а диффузионный — рассеянный, учитывая при этом его интенсивность. Но для датчиков этих типов полученный сигнал требует дальнейшей обработки. Вне зависимости от выбранного типа датчика, для счета обычно используется независимый микрокомпьютерный или микропроцессорный блок как отдельное устройство.

Первый прототип датчика

Так как нам хотелось бы иметь устройство в едином корпусе, максимально адаптируемое под разные задачи, было решено: во-первых, использовать датчик работающий на отражение, во-вторых, реализовать блок подсчета на встроенном компьютере.

За отправную точку было решено взять аналоговую часть универсального тахометра, который работает на отраженном свете. В этом случае на движущийся механизм (например, вал) крепится яркая светоотражающая метка, наводится луч света, и прибор показывает частоту вращения. Источником света может выступать как лазер, так и обычный светодиод. В первом прототипе нашего счетчика импульсов за источник света был взят светодиод, использовалась линза с фокусным расстоянием 35 мм. На одном операционном усилителе был собран компаратор, на другом буферный элемент. Также была собрана цепочка, обеспечивающая плавающий порог срабатывания компаратора.

Рисунок 2. Первый прототип датчика - принципиальная схема.

Рисунок 2. Первый прототип датчика — принципиальная схема.

Испытания показали работоспособность в диапазоне 10-30 см с очень контрастными метками (использовали световозвращающий скотч). Но такой результат нас еще не устраивает, так так датчик на просвет работает на значительно больших расстояниях. Также система оказалась чувствительна к включению/выключению освещения в помещении, и при использовании подобного подхода от этого недостатка избавиться не получится.

Второй прототип датчика

В следующей версии для улучшения чувствительности и расстояния срабатывания датчика добавили гистерезис, настраиваемый с помощью подстроечного резистора. Остальные элементы были подобраны эмпирически в предыдущих опытах.

Рисунок 3. Второй прототип датчика - принципиальная схема.

Рисунок 3. Второй прототип датчика — принципиальная схема.

Второй прототип работал лучше предыдущего — увеличилось расстояние срабатывания и снизились требования к отражающим характеристикам меток. Однако все еще имеется ряд проблем. Во-первых, на низкой скорости движения объектов был замечен пропуск импульсов. Это связано с тем, что схема плавающего порога успевала подстроиться под изменения. Во-вторых, при глянцевой поверхности объекта счетчик давал много ложных срабатываний, так как не хватало гистерезиса. Но поднимать гистерезис бесконечно нельзя, система просто перестанет реагировать на обычные метки. И в-третьих, что самое печальное, в некоторых случаях счетчик ловил пульсацию бюджетного освещения в производственных помещениях.

Читайте так же:
Обновление для счетчика банкнот
Третий прототип датчика

В результате проведенных опытов стало понятно, что нельзя обойтись без дополнительной настройки системы, которую можно осуществить только с помощью микроконтроллера. Также для исключения влияния помех от фонового освещения решили добавить модуляцию опорного сигнала и преобразование Фурье на приемнике. Корпус уже был разработан и изготовлен на предыдущих этапах, и нам хотелось вписаться в его габариты. Так выбор пал на практически единственный вариант — STM32G030J6M6 Cortex — M0+ c ADC 2.5Msps в корпусе SOIC-8. Отличное решение для непрерывной обработки данных от АЦП. Общение с микроконтроллером осуществляется по шине I2C.

Рисунок 4. Третий прототип датчика - принципиальная схема.

Рисунок 4. Третий прототип датчика — принципиальная схема.

На операционном усилителе собран трансимпедансный усилитель тока фотодиода. Лазер модулируется дискретным сигналом от таймера, потому что в данном случае нет необходимости получать чистый синус. Для совместимости с предыдущими решениями был сделан дискретный вывод для использования аппаратного счетчика событий (1й пин разъема P1), а конфигурация осуществляется один раз при старте системы. Таким образом, сохраняется полная преемственность с уже написанным ПО.

В микроконтроллере реализованы генерация сигнала ШИМ, обработка оцифрованных данных и общение по I2C. За генерацию ШИМ отвечает таймер, синхронизированный с АЦП. Данные передаются в память по DMA и обрабатываются по половинам — пока заполняется первая половина буфера, вторая анализируется. Сам алгоритм обработки данных получится следующий:

Рисунок 5. Алгоритм обработки данных

Рисунок 5. Алгоритм обработки данных

Микрокомпьютер

С оптическим датчиком разобрались, теперь вернемся к самому устройству. Помимо датчика, нам также нужно реализовать подсчет импульсов и отправку данных на сервер для дальнейшей аналитики. Со всем этим справится одноплатный компьютер. Основные требования к нему следующие:

возможность запускать программу на Python 3,

место для пары сетевых библиотек,

интерфейсы Ethernet и Wi-Fi для связи с сервером,

питание по micro USB или PoE,

производительность — не критично,

время включения — не более 2 минут,

хранилище данных не требуется, так как мы хотим передавать их на сервер, и буфера в оперативной памяти будет достаточно.

Сначала мы использовали Orange Pi zero, однако, учитывая их немалые габариты и невозможность нормально сделать PoE, решено было поискать другие варианты. Так взгляд пал на одноплатный компьютер VoCore, характеристики которого полностью подходили под задачу. Изучив предложения на китайском рынке, был найден очень похожий вариант выпускаемый массово — процессор RT5350, 32Mb RAM, 8/16Mb Flash.

Рисунок 6. Одноплатный компьютер VoCore.

Рисунок 6. Одноплатный компьютер VoCore.

Он немного больше, чем оригинальный VoCore, зато под модулем остается место для размещения компонентов, а также у модуля есть удобный разъем для подключения к основной плате. Схематика незначительно отличается от оригинального VoCore, так что конфигурацию от VoCore можно легко адаптировать под китайского товарища.

Конструктив

Рисунок 7. 3Д модель счетчика.

Рисунок 7. 3Д модель счетчика.

Для удобство калибровки системы было решено дать одну степень свободы оптическому датчику, разместив его в отдельной поворотной голове.

Рисунок 8. Поворотная часть корпуса.

Рисунок 8. Поворотная часть корпуса.

От люфта и случайного поворота защищает пружина и фрикционная шайба. Для большинства задач этого оказывалось достаточно. Материнская плата, модуль PoE и сам компьютер расположены максимально компактно в основной части корпуса.

Рисунок 9. Основная часть корпуса.

Рисунок 9. Основная часть корпуса.

Так как партии пока относительно небольшие корпус изготавливается методом SLS печати.

Итак, в итоге у нас получилась следующая архитектура устройства:

вычислительный модуль (одноплатный компьютер),

основная плата, на которой расположены разъемы Ethernet, USB, I2C, светодиоды и кнопка,

плата питания (устройство может питаться как от microUSB так и от PoE).

Подсчет срабатываний

Теперь пара слов о том, как реализован подсчет срабатываний датчика. Независимо от типа датчика, алгоритм подсчета импульсов остается одинаковым. Выход датчика подключается к GPIO процессора. Количество импульсов подсчитывалось через GPIO interrupt. Для этого требуется настроить GPIO на вход и включить прерывания. Об этом хорошо написано, например, тут. Число срабатываний можно посмотреть командой cat /proc/interrupts | grep gpiolib. Если же требуется реагировать на каждое событие или записывать время его срабатывания, то уже придется написать простую программу. Данный подход хорошо себя зарекомендовал и является необходимым и достаточным источником данных для подобного класса датчиков. В случае датчика с микроконтроллером, нужно перед началом работы загрузить необходимые параметры по I2C.

Читайте так же:
Счетчик с чипом что это такое

Заключение

Итак, что мы имеем на выходе? Компактное устройство для подсчета импульсов с оптическим датчиком и готовой реализацией отправки данных на сервер по Ethernet или WiFi. Была реализована передача данных по MQTT. Адаптивная архитектура также позволяет легко подключать практически любой другой датчик по I2C или SPI через переходник. На данный момент имеются такие варианты счетчиков: лазерный с аналоговой обработкой сигналов, лазерный с цифровой обработкой сигналов, а также индукционный счетчик для подключения внешнего промышленного индукционного датчика. Разработанный корпус позволил осуществлять поворот оптического модуля, а также его замену на другой тип датчика. В ближайших планах хотим подключить тепловизионный датчик для мониторинга нагруженных узлов в производстве.

Счетчик импульсов СИ20.

СИ20

Счетчик импульсов ОВЕН СИ20 входит в состав новой линейки счетчиков импульсов, отличающейся повышенной устойчивостью к различным видам электромагнитных помех. Приборы данной линейки способны работать и при отрицательных температурах до -20 °С .

К преимуществам данного счетчика можно отнести универсальный источник питания, что позволят запитывать прибор как от сети 220В, так и от сети постоянного тока 24В.

Данный прибор был специально адаптирован для управления системами дозирования жидких сред, намоточных установок (кабель, провод, экструзионная пленка и т.д.).

Микропроцессорный счетчик импульсов СИ20 может использоваться для подсчета количества продукции на транспортере или жидкости, длины наматываемого кабеля или экструзионной пленки, суммарного количества изделий и т.п.

Цифровой счетчик импульсов будет выпускается в корпусах 3-х типов: настенном Н и щитовых Щ1, Щ2.

Основные функциональные возможности

  • прямой счет импульсов, поступающих от подключенных к прибору датчика
  • перевод количества импульсов в реальные единицы измерения продукции
  • выбор позиции десятичной точки
  • коэффициент маштабирования
  • два режима работы выходных устройств: «дозатор», «сигнализатор»
  • четыре дискретных входа для организации счета и реализации функций стартстоп, блокировка, сброс
  • универсальные входы, позволяющие работать с датчиками PNPNPN типа, сухим контактом
  • встроенный источник питания датчиков –24В
  • управление нагрузкой с помощью одного выходного устройства
  • сохранение результатов счета при отключении питания
  • программирование с кнопок на лицевой панели
  • полное соответствие требованиям ГОСТ Р 51522 (МЭК 61326) по электромагнитной совместимости для оборудования класса А

Технические характеристики

  • Прибор имеет встроенный универсальный источник питания, что позволяет прибору работать как от сети с напряжением питания 90. 246 В переменного тока, так и от сети постоянного тока 24В
  • Один 6-ти разрядный цифровой индикатор
  • Максимальная частота счета входных импульсов до 2,5 КГц

Диапазон напряжений питания постоянного тока СИ20-У.Х.Х, В

Диапазон напряжений питания переменного тока СИ20-У.Х.Х, В, частота, Гц

от 90 до 264 В
от 47 до 63 Гц

Максимальная потребляемая мощность, не более, ВА

Частота входных импульсов

Длительность входных импульсов, мкс, не менее

Диапазон значения множителя

Частота входного фильтра

Номинальное напряжение питания датчиков, В

Нестабильность напряжения питания датчиков, %

Максимальный ток нагрузки источника питания датчиков, мА, не более

Количество разрядов цифрового индикатора

Габаритные размеры прибора:

Степень защиты корпуса

Масса, кг, не более

Средний срок службы, лет, не менее

Межповерочный интервал, лет

Условия эксплуатации.

  • Закрытые взрывобезопасные помещения без агрессивных паров и газов
  • Температура окружающего воздуха от -20 до +70 °С
  • Верхней предел относительной влажности 95% при 35 °С без конденсации влаги
  • Атмосферное давление от 84…106,7 кПа

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует группе исполнения N2 по ГОСТ 12997-84.

Читайте так же:
Как установить счетчика энергомера се 101

По устойчивости к климатическим воздействиям при эксплуатации прибор соответствует группе исполнения В4 по ГОСТ 12997-84.

Структура условного обозначения.

Х — напряжение питания:

У — от сети переменного тока с частотой от 47 до 63 Гц (номинальные значения 50 или 60 Гц) и напряжением от 90 до 264 В (номинальные значения 110, 220 или 240 В) или от сети постоянного напряжения от 20 до 34 В (номинальное значение 24 В).

Х — конструктивное исполнение:

Н — корпус настенного крепления с размерами 130х104х65 мм и степенью защиты IP44;
Щ1 — корпус щитового крепления с размерами 96х96х65 мм и степенью защиты со стороны передней панели IP54;
Щ2 — корпус щитового крепления с размерами 96х48х100 мм и степенью защиты со стороны передней панели IP54.

Счетчик воды с импульсным выходом: что это и способы подключения

Современные счетчики, устанавливаемые в квартирах, сокращают счета за коммунальные услуги. Водосчетчик для воды с импульсным выходом позволяет с высокой точностью определять объемы расхода холодной и горячей воды. Стоит отметить, что их установка целесообразна в помещениях с большим потреблением водного ресурса.

Особенности счетчиков воды с импульсным выходом

Импульсный водомер – это устройство, которое становится все более распространенным в жилом секторе, устанавливается для точной фиксации объемов потребляемого водного ресурса в реальном времени.

Водяной счетчик с импульсным выходом и стандартное оборудование практически не отличаются друг от друга. Основная их задача – классическая схема расчета потребляемых объемов воды за счет запуска крыльчатки под воздействием потока воды. Параллельно с этим импульсное устройство не только ведет подсчет, но и передает значения на удаленный носитель информации.

Основными достоинствами устройства принято считать:

  • Передача данных на внешние носители информации в автоматическом режиме и реальном времени.
  • Есть возможность подключить счетчик к сложным системам обработки данных. Например, можно без больших усилий сопрячь устройство с АСКУВ.
  • Доступная стоимость, относится к бюджетному классу.
  • Продолжительный эксплуатационный срок благодаря высокому уровню надежности.
  • Устойчивость к разрушительному воздействию высоких температур.

Невзирая на большое количество преимуществ, к сожалению, имеются и недостатки. Следует отметить следующее:

  • Обязательное использование антимагнитной защиты, в противном случае произойдет принудительная остановка учета воды.
  • Ограниченный срок эксплуатации, по окончании которого его в обязательном порядке требуется заменить, иначе полученные показания будут иметь высокую погрешность.
  • Данные с прибора удается получать при условии, что он подключен к радио-цифровому сигналу.

Перечисленные недостатки не так весомы, поэтому популярность импульсного водосчетчика среди россиян стремительно возрастает.

Принцип работы оборудования

Стандартная конструкция традиционного водосчетчика базируется на счетном механизме, который и ведет подсчет объема потребляемого водного ресурса. Импульсные конструкции производят подсчет объема воды и передают информацию в определенные информационные узлы.

Алгоритм работы устройства:

  1. В трубопроводе находится крыльчатка, которая под воздействием выходного потока активизируется.
  2. Далее, подключается муфта, задача которой – учитывать объемы и преобразовывать в цифры на экране.
  3. В ней при полном обороте магнит взаимодействует с датчиком, а после показатель указывается на экране.
  4. Сведения не только отображаются на циферблате, но и передаются на сам счетчик, который и считает расход воды (холодной или горячей) за определенный промежуток времени.

Стоит отметить, что 1 импульс в счетчике приравнивается к 10, 100 или 1000 литров воды. Эти показатели в полной мере зависят от диаметра водопровода.

Применение импульсного прибора не вызывает трудностей и не требует к себе каких-то навыков. Устройство, включая датчик, выполняют свою «работу» в автоматическом режиме. Кроме этого, он не потребляет электроэнергию.

Снятие показаний

Выше уже отмечалось, что у домочадцев нет потребности снимать и передавать в соответствующие службы показания, поскольку устройство это делает автоматически в режиме реального времени.

Однако стоит отметить, что часто встречаются случаи, когда конструкция по непонятным причинам не передает сведения, что приводит к «конфликтам» с коммунальными службами.

Читайте так же:
Счетчика сэт1 1 неисправности

Поэтому специалисты рекомендуют все-таки снимать ежемесячно показания с экрана и передавать их контроллеру (действия аналогичны снятию показаний с обычных водомеров).

Популярные модели

Ассортимент водосчетчиков с импульсным выходом велик, поэтому возникают трудности при выборе. Предварительно надо ознакомиться с основными критериями, проконсультироваться с консультантом в магазине и лишь после покупать. К востребованным моделям счетчиков относят:

  • Apator Powogaz JS-1,5 NK XB – одноструйный счетчик, корпус изготовлен из качественной латуни. Высокая ремонтопригодность и качество сборки. Незначительные потери напора. Стоит отметить, что измерительная камера отделена от счетного механизма. Устройство сертифицировано для эксплуатации в промышленных масштабах, а также частных домах, квартирах.
  • VALTEC – одноструйный счетчик, предназначенный для подсчета расходов горячей воды. Корпус изготовлен из латуни. Пригоден для вторичного ремонта, имеет высокое качество сборки. Свойственны незначительные потери напора. Счетный механизм находится вдали от измерительной камеры. Предназначен для использования в промышленных масштабах, а также квартирных и частных домах.
  • АКВА-С – счетчики для холодной и горячей воды, отечественного производства. Корпус изготовлен из латуни. Высокая степень ремонтопригодности, а также хорошее качество сборки. Измерительная камера отдалена от счетного механизма. Пригоден для использования в промышленных масштабах и квартирных/частных домах.
  • Немецкая компания ZENNER изготовляет водосчетчики, предназначенные для горячей и холодной воды. Материал корпуса – латунь. При эксплуатации наблюдаются незначительные потери напора, высокие показатели ремонтопригодности. Сертифицирован для использования в квартирных/частных домах и промышленных масштабах.
  • Счетчик для воды с импульсным выходом итальянской компании B-METERS srl –устройство, предназначенное для подсчета расходов холодной воды. Корпус изготовлен из латуни. Пользователями отмечается высокая ремонтопригодность и качество сборки. Измерительная камера расположена вдали от счетного механизма. Предназначен для использования на промышленных объектах, а также многоквартирных, частных домах.

Это лишь краткий перечень устройств, который устанавливают у себя дома. Все они высокого качества, которое подтверждено многими квартиросъемщиками. При выборе лучше ориентироваться на производителей, себя хорошо зарекомендовала польская, итальянская и немецкая конструкция.

Как подобрать подходящую конструкцию

Несколько подобных приборов способны работать суммарно, передавая сведения на один общий сумматор. При этом у каждого есть возможность вести подсчет как общего расхода водного ресурса, так и затрат на определенных объектах.

Но при покупке счетчика воды с импульсным выходом надо обращать внимание на следующие критерии:

  • давление подачи воды в трубопроводе, а также возможный перепад давления в системе;
  • предварительный подсчет использования водного ресурса по объему;
  • диаметр трубопровода.

Водомер требуется подбирать в соответствии с диаметром водопровода, в противном случае перепады в потоке воды значительны и ощутимыми для домочадцев. Что касается установки, то алгоритм аналогичен фиксации обычных водосчетчиков.

Способы монтажа и подключения

Подключение водомера производится сотрудником коммунального предприятия.

Это обусловлено тем, что при налаживании автоматического удаленного доступа с импульсного устройства нужно подключать к нему сетевой кабель или модем-транслятор. Без их участия не удастся осуществить передачу данных сигнала по каналам LPWaN или GCM.

Во время подключения важно, чтобы устройство было подсоединено к проводам сети сбора данных. Далее, показания будут транслироваться в расчетный центр, на основании полученной информации будут приходить начисления в квитанциях.

Водосчетчики с импульсным выходом – это инновационное устройство, которое позволяет сделать жизнь человека еще более комфортной и простой. У владельца жилплощади не будет необходимости передавать сведения сотрудникам коммунальных служб, все происходит автоматически. Еще одно преимущество, что водомер не потребляет электроэнергию и стоит весьма недорого.

Приобретая устройство, рекомендуется не только ознакомиться с критериями выбора, но и посоветоваться с сотрудником коммунального предприятия и консультантом в магазине, чтобы оно подходило по всем параметрам.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector