Счетчики импульсов: схемы, назначение, применение, устройство
Счетчики импульсов: схемы, назначение, применение, устройство
Что такое счетчик импульсов?
Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1. По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).
Классификация счетчиков импульсов
Суммирующий счетчик импульсов
Рассмотрим суммирующий счетчик (рис. 3.67, а). Такой счетчик построен на четырех JK-триггерах, которые при наличии на обоих входах логического сигнала «1» переключаются в моменты появления на входах синхронизации отрицательных перепадов напряжения.
Временные диаграммы, иллюстрирующие работу счетчика, приведены на рис. 3.67, б. Через Кси обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого — старшему разряду.
В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.
Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.
Трехразрядный вычитающий счетчик с последовательным переносом
Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.
На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯ Q1 − 1.
После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.
Трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом
Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).
После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.
Трехразрядный реверсивный счетчик с последовательным переносом
Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).
В режиме вычитания входные сигналы должны подаваться на вход Тв. На вход Тс при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111. Когда первый сигнал поступает на вход Тв, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1.
При поступлении второго импульса на вход Тв на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично. В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Тс. На вход Тв подается логический 0.
В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ):
- ИЕ6 — двоично-десятичный реверсивный счетчик;
- ИЕ7 — двоичный реверсивный счетчик.
Направление счета определяется тем, на какой вывод (5 или 4) подаются импульсы. Входы 1, 9, 10, 15 — информационные, а вход 11 используется для предварительной записи. Эти 5 входов позволяют осуществить предварительную запись в счетчик (предустановку). Для этого нужно подать соответствующие данные на информационные входы, а затем подать импульс записи низкого уровня на вход 11, и счетчик запомнит число.
Вход 14 — вход установки О при подаче высокого уровня напряжения. Для построения счетчиков большей разрядности используются выходы прямого и обратного переноса (выводы 12 и 13 соответственно). С вывода 12 сигнал должен подаваться на вход прямого счета следующего каскада, а с 13 — на вход обратного счета.
Принципы работы счетчиков воды с импульсным выходом
Водосчетчики – устройства для сбора и передачи показаний потребления воды – позволяют следить за расходом ресурса и взимать плату строго за использованный продукт. Это удобно на практике, но сопряжено с рядом негативных моментов. В частности, не все владельцы недвижимости передают достоверные показания или делают это своевременно. Некоторые даже вмешиваются в работу приборов с целью занижения реальных цифр. Установка счетчиков воды с импульсным выходом призвана решить перечисленные проблемы. Такие системы подразумевают дистанционное ведение мониторинга показаний и исключают любое воздействие мошенников на прибор.
Конструкция и принцип работы водного расходомера с импульсным выходом
Государство старается автоматизировать сферы, связанные с потреблением природных ресурсов. Это направлено на облегчение жизни граждан, уменьшения количества случаев использования противозаконных схем. Счетчик для учета расхода воды с импульсным выходом позволяет собирать нужные данные в любых помещениях. Прибор отличается от универсальных водосчетчиков возможностью подавать сигнал для последующей электронной обработки. Он может быть использован для учета расхода жидкости на автономных системах, горячих и холодных водяных потоках.
Конструктивные отличия
Счетчик воды с импульсным выходом как и его механические аналоги предназначен для измерения объема жидкости, проходящей через трубопровод. Он также имеет стрелку на циферблате, которая крутится под влиянием силы потока массы, запускающего шестеренку.
Отличительным моментом становится наличие магнита, закрепленного на этой стрелке, и герметичного контакта на циферблате, который называется герконом. Основу рабочего механизма составляет электронная система, которая отвечает за определение продолжительности импульса. На интервал его подачи влияет скорость потока жидкости. В отдельную группу счетчиков такого типа выделяют их турбинные разновидности, которые применяются в промышленности, сельском хозяйстве.
Принцип действия импульсного водосчетчика
В своей основе принцип работы водосчетчиков импульсного типа похож на действие механического аналога. Здесь также имеется крыльчатка, которая приводится в движение потоком жидкости и начинает вращаться. Стрелочный индикатор, делая полные обороты, отсчитывает объем расхода воды. Когда крошечный магнит, закрепленный на стрелке, проходит над герконом, генерируется электрический сигнал и подается в слаботочную сеть. За счет таких импульсов устройство подсчитывает прошедшее количество жидкости – оно замеряет промежуток времени между поданными сигналами. Подобная система допускает подключение автоматического оборудования, способного ставить задвижки и ограничивать дальнейший ток воды при перерасходе ресурса.
Алгоритм снятия и передачи показаний с импульсных счетчиков
Особенности строения конструкции позволяют максимально точно вести учет горячей и холодной воды. Наличие магнита и геркона приводит к замыканию последнего под воздействием магнитного поля. За счет этого полный оборот стрелки приводит к подаче импульса, который остается только считать устройству и подать на внешний пульт приема сигнала. Работа импульсных счетчиков воды обеспечивается простейшей электронной системой, для запуска которой даже не нужен отдельный источник питания. Геркон самостоятельно вырабатывает энергию, необходимую для замыкания слаботочной электроники.
Чем отличается импульсный счетчик воды от обычного
Принципиальной разницы в работе стандартного устройства и счетчика с импульсным выходом холодной воды (или горячей) не существует. Оба механизма действуют по классической схеме, основанной на запуске движения крыльчатки под напором жидкости. Только в случае со второй системой не просто фиксируется объем проходящей воды, этот показатель еще и передается на внешний сигнальный пульт.
Преимущества и недостатки импульсных водомеров
Целесообразность повсеместной установки счетчиков с импульсным выходом до сих пор обсуждается специалистами. Данные по эффективности и срокам службы приборов постоянно пересматриваются.
При проведении новых испытаний выявляют дополнительные плюсы и минусы устройств.
Установка специализированного счетчика дает ряд преимуществ:
- возможно дистанционное снятие показаний со счетчиков в автоматическом режиме;
- устройства считаются более долговечными, чем стандартные приборы;
- измерительные системы дают максимально точные показания;
- несмотря на электронную основу работы прибора источник электрического питания не требуется;
- счетчик можно устанавливать вертикально или горизонтально без риска повлиять на точность показаний;
- при необходимости можно подобрать подходящую модель из широкого ассортиментного ряда по низкой цене;
- сертифицированные продукты, соответствующие стандартам, обладают прочным и герметичным корпусом, гарантируют бесперебойную работу на время использования.
Прежде чем устанавливать промышленный или квартирный счетчик с импульсным выходом, стоит оценить его минусы. Со временем функциональность геркона снизится, что будет сказываться на точности показаний водомера. Иногда для бесперебойной передачи информации требуется дополнительно установить источник радио- или цифрового сигнала, а это требует серьезных затрат. Испытания показали, что работа счетчика может блокироваться неодимовым магнитом. Для предупреждения таких сбоев прибору требуется антимагнитная защита. Если потребитель не позаботился о прямой «связи» с устройством, то расход ресурса ему придется контролировать интуитивно.
Применение импульсных счетчиков
Использование водомеров с импульсным выходом позволяет исключить труд человека и затрату им времени на сбор показаний. Автоматизация процесса дает большие преимущества на производстве, в общественных заведениях, помещениях с затрудненным доступом к циферблату. Главное, обеспечить работу каналов кабельной или беспроводной связи, доводящих информацию до пункта учета. Особенности конструкции позволяют получить высокую точность показаний по расходу горячей и холодной воды с минимальным риском сбоев.
Как подключить импульсный водосчетчик
Монтаж механизма должен проводиться специалистами в этой области, иначе возникает вероятность нарушения технологии работы устройства. Прибор монтируется на вертикальную или горизонтальную трубу, причем для холодной и горячей воды разработаны отдельные приспособления. После установки счетчика его надо подключить к слаботочному кабелю для передачи сигналов на пункт считывания. Эта система будет переводить полученные импульсы в кубометры воды и передавать информацию дальше на пульт. Также можно установить сетевой кабель или GSM-модем для отправки данных на персональный компьютер или централизованную систему управляющей компании.
Где применимы импульсные водомеры
Усовершенствованные счетчики воды все чаще применяются в системах «умных» домов, но таковые пока остаются редкостью.
Управляющие компании только планируют постепенный перевод потребителей на такие системы с целью автоматизации сбора данных по расходу ресурсов.
Сферы применения импульсных водомеров:
- промышленные предприятия с огромным расходом воды, многочисленными инженерными установками;
- общественные объекты – школы, офисы, больницы, гостиницы и другие заведения с масштабными сетями подачи воды;
- сельское хозяйство, в том числе системы орошения обширных площадей;
- объекты, на которых необходимо водоснабжение, но доступ к счетчику затруднен (шахты, вышки, научные станции).
Импульсные водомеры позволяют не только собирать данные о расходе воды.
С помощью дополнительных систем можно отрегулировать подачу ресурса, снизив его потребление.
Счетчик импульсов в Москве
Железные гарантии высокого качества. Быстрая резка и доставка по России. Оптовые и розничные цены. Широкий ассортимент металлопроката.
- В наличии
- Опт
- 15.11.21
Бренд: Евроавтоматика. Один из крупнейших в московском регионе поставщиков строительных материалов. Список наименований, представленных в каталоге, превышает 200 тысяч позиций различного назначения.
- Под заказ
- Опт
- 15.11.21
ИД-2 Счетчик импульсов — тахометр электронный Диапазон измерений, м 0,1-99999
- В наличии
- Опт
- 10.11.21
Собственная производственная база, испытательная лаборатория, постоянный контроль качества и квалифицированный персонал. Все приборы внесены в Госреестр СИ. Длительная гарантия позволит вам забыть о каких-либо неисправностях.
- Под заказ
- Опт
- 15.11.21
Артикул «Минимакс»: 2013400158. Единица измерения: шт. Бренд: ОВЕН. Вес, кг: 3,20.
- В наличии
- Опт
- 10.11.21
Микропроцессорный счeтчик импульсoв СИ8. Используется для подсчета количества продукции на транспортере, длины наматываемого кабеля или экструзионной пленки, сортировки продукции, отсчета партий продукции, суммарного количества изделий и т.п. Встроенный в
- В наличии
- Опт / Розница
- 15.11.21
Используется для подсчета количества продукции на транспортере или жидкости, длины наматываемого кабеля или экструзионной пленки, сортировки продукции, суммарного количества изделий и т.п. Рекомендуется использовать совместно с энкодерами.
- Под заказ
- Розница
- 15.11.21
Предназначен для подсчета количества продукции, числа посетителей и т.д, а так же для сортировки продукции, отсчета партии продукции, суммарного количества изделий.
- В наличии
- Опт
- 15.11.21
ООО «МЕГАКИП» является официальным представительством крупнейших поставщиков и заводов-изготовителей оборудования, промышленной автоматики, оборудования для монтажа КИПиА, а также комплексного снабжения. Все поставляемые изделия на гарантии.
- В наличии
- Опт / Розница
- 15.11.21
Широкое разнообразие контрольно-измерительных приборов, проводим подбор оптимального оборудования или его аналогов, ведем разработку и изготовление систем автоматизации разного уровня сложности.
- В наличии
- Опт / Розница
- 08.11.21
Производитель: SAMOA. Скорость потока: 1-50. Артикул: 366055. Высота, мм: 67. Ширина, мм: 87. Длина, мм: 93. Вес, брутто, кг: 0.5
- В наличии
- Опт / Розница
- 15.11.21
Ежегодно десятки новых предприятий отдают своё предпочтение превосходному качеству предлагаемой продукции и демократичной цене, что стимулирует нас к росту, развитию компании и поддержанию высоких стандартов качества и отличного сервисного сопровождения.
Турбинный расходомер: принцип работы с газом и жидкостью
СОДЕРЖАНИЕ:
- Схема турбинного расходомера
- Принцип действия турбинного расходомера
- Особенности использования (K-фактор и работа с разными скоростями)
- Установка и калибровка
- Достоинства и недостатки
Турбинный (роторный) расходомер – это прибор, позволяющий контролировать объёмный расход среды, проходящей через трубопровод за единицу времени, за счёт измерения скорости потока жидкости или газа.
Схема турбинного расходомера
Упрощенная схема турбинного расходомера состоит из 3-х основных деталей:
- Турбинка (ротор, рабочее колесо, лопатки)
- Измерительный датчик
- Корпус
Турбинка состоит из вала, который закрепляется в трубопроводе и рабочего колеса. На рабочем колесе размещаются лопасти (лопатки или крыльчатка). Такая крыльчатка устанавливается аксиально или тангенциально относительно оси потока (см. картинку). В аксиальных устройствах поток направлен параллельно оси вала, а у тангенциальных он проходит по окружности. На конце каждой из лопаток установлен магнитный полюс.
Материал ротора и подшипников подбирается в зависимости от типа среды и необходимой точности. Вращение ротора происходит с помощью подшипников малого трения (в основном шариковыми).
Измерительный датчик состоит из индукционной катушки, или датчика Холла и преобразователя сигнала. Индукционная катушка вырабатывает электрические импульсы прямо пропорционально скорости вращения ротора передает их регистрирующему прибору, который находится на корпусе расходомера. Иногда устройства оборудуются двумя катушками, чтобы делать замеры в прямом и обратном направлениях потока. Датчик Холла просто фиксирует изменение в магнитных полях.
Корпус прибора сделан из немагнитной стали и содержит в себе и измерительный датчик и ротор. Наиболее популярные фланцевые расходомеры, которые монтируются на трубопровод с помощью фланцев.
Еще одной важной деталью, которую стоит упомянуть являются струевыпрямители. Чаще всего используются пластины, которые установлены параллельно по направлению перемещения среды. Они нужны для того, чтобы равномерно распределять поток по всем лопаткам. Чтобы избежать завихрений, также используются механические стабилизаторы. Кстати на специальном создании вихрей основывается работа Вихревых расходомеро в .
Принцип действия турбинного расходомера
Основной целью роторного расходомера как мы описывали выше является измерение объемного расхода, через скорость потока. Этот принцип основан на зависимости скорости вращения турбины, приводимой в действие потоком жидкости или газов.
Это очень похоже на езду на велосипеде. Чем быстрее вы крутите педали, тем быстрее вы двигаетесь. В качестве движущей силы у нас будет поток, а в качестве колес – ротор турбины. Давайте рассмотрим подробнее:
Жидкость или газ, попадает из трубопровода в сечение с турбинкой. Струевыпрямители разделяют поток и направляют его равномерно на лопасти. Поток воздействует на эти лопатки и заставляет их двигаться. Чем больший объем вещества проходит через трубопровод, тем быстрее скорость вращения ротора и тем выше угловая (вращательная) скорость лопастей.
Лопатки с магнитами проходят рядом с датчиком на определенной скорости и вызывают изменения магнитных полей. Если устройство имеет индукционную катушку, то в ней индуцируется электрический импульс. Если установлен датчик Холла то он просто фиксирует изменения. Частота с которой происходят эти изменения передается в преобразователь.
Частота таких сигналов прямо пропорциональна скорости движения потока. Упрощенная формула соотношения между объемным расходом и частотой импульсов выглядит так:
F= k * Q
F — частота импульсов, генерируемых датчиком срабатывания (Гц, или имп/с)
Q — Объемный расход (м³/с)
k — Коэффициент турбинного расходомера, также известен как k-фактор (например, количество импульсов на м³). Более подробно рассмотрим его ниже.
Дальше преобразователь анализирует полученные данные и конвертирует их с аналогового в цифровой сигнал.
Особенности использования (K-фактор и работа с разными скоростями)
К-фактор – это специальный множитель, который отображает количество импульсов на единицу объёма или массы среды, величина постоянная для большого диапазона расходов.
Он необходим для правильного отображения величины в измерительных приборах. После калибровки этот коэффициент указывается в сертификате оборудования.
Точность результатов во время нормальной и малой скорости потока
Роторные расходомеры одними из самых точных приборов для измерения расхода рабочей среды трубопровода. Стандартная погрешность измерений составляет всего 0,5-1%. В некоторых устройствах она достигает всего 0,1-0,2%.
Во время малой скорости потока, точность расходомера может уменьшатся т.к. нужна достаточная сила, чтобы привести рабочие лопатки в движение. Также если уровень вещества в трубопроводе будет небольшим, то вещество не будет равномерно воздействовать на все лопатки и данные будут искажены. В таких случаях лучше подойдут Электромагнитные расходомеры .
Установка и калибровка
Турбинный расходомер устанавливается на прямых участках вертикальных и горизонтальных трубопроводов в соответствии со стрелкой на корпусе прибора, обозначающей желаемое направление потока среды. На газовых трубопроводах он устанавливается только горизонтально.
Длина прямого участка до однотурбинного прибора должна составлять не менее 10 диаметров трубы, после него – не меньше 5. Расстояние от центробежного насоса или клапана до расходомера должно быть более 20 диаметров трубопровода. Двухтурбинные приборы можно устанавливать на прямых участках меньшей длины.
На вертикальном трубопроводе расходомер лучше устанавливать так, чтобы поток жидкости был направлен сверху вниз. В этом случае случайно попавшие в прибор пузырьки воздуха будут быстро из него выходить. Также если предстоит работа с загрязненными средами, то стоит установить дополнительный фильтр, чтобы избежать повреждения твердыми частицами.
Калибровка
Калибровка прибора осуществляется в лабораторных условиях на воде. Если прибор предполагается использовать в вязкой среде (2-300 сСт), для калибровки берутся жидкости со свойствами, аналогичными свойствам рабочей среды.
В результате для каждой цели присваивается свой К-фактор. Производитель может приложить к прибору графики универсальных калибровок по вязкости. По ним можно определить уже просчитанный К-фактор для разных типов среды.
Достоинства и недостатки
Итак, рассмотрев принцип действия и особенности, можно выделить основные плюсы и минусы этого типа расходомеров.
Достоинства:
- Простота монтажа и обслуживания
- Высокая точность, линейность и повторяемость результатов
- Оптимальная работы при высоком давлении (до 400 бар)
- Большой температурный диапазон (от –210°C до +177°C)
- Высокая пропускная способность для диаметров от 40 до 250 мм.
- Быстрый динамический ответ и чувствительность к изменениям
- Может работать с веществами с низкой электропроводностью
- Низкий перепад давления в турбине (pressure drop)
- Небольшая стоимость
Недостатки:
- Необходимо задавать вязкость материала перед работой
- Невозможность работы в средах с высокой вязкостью (где профиль потока ламинарный)
- Материалы обязательно должны быть чистыми (без твердых частиц)
- Вибрация влияет на результат
- На точность отрицательно влияют пузырьки в жидкости
- Требует длинного прямого участка трубы (10 диаметров до и 5 после)
Вывод: Турбинные расходомеры являются отличным устройством для измерения очень разных типов среды:
Измеритель объемного расхода турбинного типа применяется со следующими средами:
- Вода
- Воздух
- Промышленные газы
- Пар
- Нефть
- Химические вещества
- Криогенные жидкости
- Углеводороды
Благодаря высокой точности подсчета такие расходомеры часто используются в счетчиках для коммерческого подсчета затрат объема углеводородов и природного газа. Тем не менее он обладает недостатками механического типа устройств, поэтому его не стоит применять с загрязнёнными веществами, а также с потоком очень низкой скорости и большой вязкости.
Комания ЭЛТА ЛТД является надежным поставщиком промышленного оборудования , на нашем сайте вы можете найти широкий диапазон Расходомеров .