Azotirovanie.ru

Инженерные системы и решения
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Большая Энциклопедия Нефти и Газа

Большая Энциклопедия Нефти и Газа

Такие теплообменники называются многоходовыми, причем ходом теплообменника обозначается участок поверхности с постоянным направлением потоков обеих сред относительно этой поверхности. Многоходовые теплообменники конструктивно выполняются часто в виде многосекционных или многокорпусных, причем каждая секция имеет собственный вход и выход греющей и нагреваемой сред. В таких случаях следует отличать направление потоков этих сред в пределах одной секции или корпуса от направления их потоков, определяемого схемой соединения между собой отдельных секций или корпусов.  [31]

Повышение интенсивности теплообмена в многоходовых теплообменниках сопровождается возрастанием гидравлического сопротивления и усложнением конструкции теплообменника. Многоходовые теплообменники работают по принципу смешанного тока, что, как известно, приводит к некоторому снижению движущей силы теплопередачи по сравнению с чисто противоточным движением участвующих в теплообмене сред.  [32]

При одинаковом количестве нагреваемой ( или охлаждаемой) жидкости скорость ее движения по трубкам в многоходовом аппарате значительно выше, чем в одноходовом. Поэтому многоходовые теплообменники более эффективны. На рис. 47 приводится конструкция горизонтального двухходового теплообменника типа ТН. Работает он следующим образом. Распределительная коробка разделена глухой продольной перегородкой на две части. Пройдя половину труб 5, жидкость попадает в днище 3, поворачивает там и затем поступает во вторую часть труб. После их прохождения жидкость через второй штуцер распределительной коробки удаляется из теплообменника. Нагревающая среда поступает в межтрубное пространство через нижний штуцер, приваренный к корпусу 2 теплообменника.  [34]

Крышки многоходовых теплообменников отличаются от одноходовых только лишь наличием перегородок.  [35]

Температурные напряжения могут также возникать в трубчатом пучке вследствие разности температур самих труб. У многоходовых теплообменников диаметром более 1000 мм при значительной разности температур входа и выхода среды в трубчатом пучке подвижную решетку выполняют разрезной по диаметру ( рис. 139, а, б), что снижает температурные напряжения в трубах.  [36]

Так как параметры теплообменника являются распределенными и взаимосвязанными, уравнения динамики для противоточного теплообменника имеют очень сложный вид, и получение частотных характеристик даже разомкнутой системы связано с трудоемкими вычислениями. В случае многоходовых теплообменников или теплообменников, в которых происходит резкое изменение скоростей пли иных физических параметров потоков, для определения динамических характеристик приходится прибегать к помощи цифровых вычислительных машин. Хотя подобные расчеты занимают всего несколько секунд машинного времени, затраты на программирование оправдываются лишь в том случае, когда решается целый ряд аналогичных задач. Регулирование теплообменника, вообще говоря, представляет собой достаточно простую задачу, так что, за исключением случаев, когда требуется очень высокая точность поддержания регулируемого параметра, упрощенные методы анализа динамических характеристик дают достаточно точные для практических целен данные.  [37]

Многоходовые теплообменники работают при смешанном токе теплоносителей. Поэтому установка многоходовых теплообменников вертикально не дает преимуществ и часто их устанавливают горизонтально.  [38]

На магистральных горячих трубопроводах применяются паровые или огневые подогреватели. Среди паровых наиболее распространены многоходовые теплообменники с плавающей головкой. Они удобны в эксплуатации, компактны, доступны для осмотра и ремонта. Для улучшения теплообмена и удобства обслуживания нефть пропускают через трубки, а пар — через межтрубное пространство. На трубопроводах большой производительности устанавливают значительное число теплообменных аппаратов. Включение их может быть последовательным и параллельным. При параллельном включении подогреватели позволяют регулировать температуру подогрева нефти в широких пределах. Число их выбирается в соответствии с расчетом. Дополнительно устанавливаются один или несколько резервных аппаратов, что позволяет производить ремонтные работы и чистку теплообменников без остановки тепловой станции. При эксплуатации паровых подогревателей необходим постоянный контроль.  [39]

При выборе наиболее выгодных условий проектирования трубчатого аппарата важно знать его габаритные размеры. Число труб в трубной решетке для многоходовых теплообменников будет равно числу трубок в пучке, умноженному на число ходов.  [40]

Кожухотрубные теплообменники могут быть вертикальными и горизонтальными. С целью повышения скорости потока теплоносителя, а также при необходимости применения более коротких труб используют многоходовые теплообменники ; схема двухходового ( по трубному пространству) теплообменника приведена на рис. 7.1 в. При большой разнице температур корпуса и труб из-за различия в их температурных удлинениях могут возникнуть термические напряжения, приводящие к нарушению плотности закрепления труб в трубных решетках. Для уменьшения этих напряжений применяют различные компенсирующие устройства.  [41]

Сказанное о сложной инфраструктуре элементов, в которые входит сводный поток, состоящий из несмешивающихся простых потоков, проще всего проиллюстрировать на примере любого узла регенеративного теплообмена. Например, элементы 6, 10, 13 ( см. рис. IV.37) могут представлять либо сложные системы многоходовых теплообменников , в которых происходит теплообмен между газом и несколькими теплоносителями, либо два или несколько теплообменных аппаратов, в каждом из которых происходит теплообмен между газом и одним из теплоносителей.  [42]

Использование метода целенаправленного перебора позволяет по результатам расчета нескольких ориентировочно выбранных вариантов уточнить стратегию дальнейшего поиска, отказавшись от расчета значительного числа заведомо худших вариантов. Например, расчет всех вариантов многоходовых кожухотрубчатых теплообменников с одинаковыми раамерами труб и кожуха нецелесообразен, если для данной задачи оказалась достаточной нормализованная поверхность одноходового, так как при той же массе многоходовые теплообменники имеют большее гидравлическое сопротивление. В другом случае, если оказалась недостаточной нормализованная поверхность шестиходового теплообменника, следует отказаться от просчета четырех — и двухходовых с теми же размерами труб и кожуха, так как их нормализованные поверхности заведомо окажутся недостаточными.  [44]

Многоходовые ( по трубному пространству) кожухотрубчатые теплообменники применяются главным образом в качестве паровых подогревателей жидкостей и конденсаторов. Именно в этих случаях взаимное направление движения теплоносителей в многоходовых теплообменниках ( смешанный ток) не приводит к снижению средней движущей силы сравнительно с противотоком, по принципу которого работают одноходовые теплообменники. Многоходовые теплообменники целесообразно использовать также для процессов теплообмена в системах жидкость-жидкость и газ-газ при больших тепловых нагрузках. Если же требуемая поверхность теплообмена невелика, то для указанных систем более пригодны элементные теплообменники. Особое значение имеют трубчатые теплообменники нежесткой конструкции ( в том числе многоходовые) в тех случаях, когда разность температур теплоносителей значительна и необходима компенсация неодинакового теплового расширения труб и корпуса аппарата.  [45]

Читайте так же:
Выделившееся теплота постоянный ток

Теплообменник

Теплообменник — техническое устройство, в котором осуществляется теплообмен между двумя средами, имеющими различные температуры.

По принципу действия теплообменники подразделяются на рекуператоры и регенераторы. В рекуператорах движущиеся теплоносители разделены стенкой. К этому типу относится большинство теплообменников различных конструкций. В регенеративных теплообменниках горячий и холодный теплоносители контактируют с одной и той же поверхностью поочерёдно. Теплота накапливается в стенке при контакте с горячим теплоносителем и отдаётся при контакте с холодным, как, например, в кауперах доменных печей.

Теплообменники применяются в технологических процессах нефтеперерабатывающей, нефтехимической, химической, атомной, холодильной, газовой и других отраслях промышленности, в энергетике и коммунальном хозяйстве [1] .

От условий применения зависит конструкция теплообменника. Существуют аппараты, в которых одновременно с теплообменом протекают и смежные процессы, такие как фазовые превращения, например, конденсация, испарение, смешение. Такие аппараты имеют свои наименования: конденсаторы, испарители, градирни, конденсаторы смешения.

В зависимости от направления движения теплоносителей рекуперативные теплообменники могут быть прямоточными при параллельном движении в одном направлении, противоточными при параллельном встречном движении, а также при взаимно поперечном движении двух взаимодействующих сред.

Содержание

Основные виды теплообменников [ править | править код ]

Наиболее распространённые в промышленности рекуперативные теплообменники:

Конструкции теплообменников [ править | править код ]

Основные виды рекуперативных теплообменников.

  • Кожухотрубные теплообменники. К корпусу, кожуху по торцам приварены трубные решетки, в которых закреплены пучки труб. В основном трубы в решетках крепятся с уплотнением развальцовкой или каким-то другим способом в зависимости от материала труб и давления в аппарате. Трубные решетки закрываются крышками на прокладках и болтах или шпильках. На корпусе имеются патрубки (штуцера), через которые один теплоноситель проходит через межтрубное пространство. Второй теплоноситель через патрубки (штуцера) на крышках проходит по трубам. В многоходовом теплообменнике в корпусе и крышках установлены перегородки для повышения скорости теплоносителей. Для увеличения теплоотдачи применяют оребрение теплообменных труб, которое выполняется или накаткой, или навивкой ленты. В случае необходимости, конструкция аппарата должна предусматривать его очистку.
  • Элементные теплообменники. Каждый элемент такого аппарата представляет собой простейший кожухотрубный теплообменник без перегородок. Такие аппараты допускают при этом более высокое давление. Однако такая конструкция получается более громоздкой и тяжёлой, чем кожухотрубный аппарат.
  • Погружные теплообменники. В погружном змеевиковом теплообменнике один теплоноситель движется по змеевику, погруженному в бак с другим жидким теплоносителем. Скорость жидкости в межтрубном пространстве незначительна и, следовательно, теплоотдача от жидкости сравнительно невелика. Такие теплообменники находят применение благодаря своей простоте и дешевизне в небольших установках.
  • Теплообменники типа «труба в трубе». Теплообменный элемент такого аппарата показан на рисунке. Отдельные элементы соединены между собой патрубками и калачами, образуя цельный аппарат необходимого размера. Эти теплообменники находят себе применение при небольших расходах теплоносителей и при высоких давлениях.
  • Оросительные теплообменники. Такой тип теплообменников применяется главным образом в качестве конденсаторов в холодильных установок. Оросительный теплообменник представляет собой змеевик из горизонтальных труб, размещённых в вертикальной плоскости в виде ряда параллельных секций. Над каждым рядом находится жёлоб, из которого струйками стекает охлаждающая вода на теплообменные тубы, омывая их наружную поверхность. При этом часть охлаждающей воды испаряется. Оставшаяся вода возвращается насосом, а потери компенсируются из водопровода. Эти теплообменники устанавливаются на открытом воздухе и ограждаются деревянными решетками, чтобы уменьшить унос воды.
  • Графитовые теплообменники. Теплообменники для химически агрессивных сред изготовляют из блоков графита, который пропитывают специальными смолами для устранения пористости. Графит отличается хорошей теплопроводностью. В блоках просверливают каналы для теплоносителей. Блоки уплотняются между собой прокладками из резины или тефлона и стягиваются крышками со стяжками.
  • Теплообменники пластинчатые. Такие теплообменники состоят из набора пластин, в которых отштампованы волнистые поверхности и каналы для протока жидкости. Пластины уплотняются между собой резиновыми прокладками и стяжками. Такой теплообменник прост в изготовлении, легко модифицируется (добавляются или убираются пластины), его легко чистить, у него высокий коэффициент теплопередачи, но его нельзя применять при высоких давлениях.
  • Пластинчато-ребристый теплообменник. Теплообменник такого типа в отличие от пластинчатого теплообменника состоит из системы разделительных пластин, между которыми находятся ребристые поверхности — насадки, присоединенные к пластинам методом пайки в вакууме. С боков каналы ограничиваются брусками, поддерживающими пластины и образующие закрытые каналы. Таким образом, в основу оребренного пластинчатого теплообменника положена жесткая и прочная цельнопаянная теплообменная матрица, построенная по сотовому принципу и работоспособная (даже в исполнении из алюминиевых сплавов) до давления 100 атм. и выше. В пластинчато-ребристых теплообменниках существует большое количество насадок, что позволяет подбирать геометрию каналов со стороны каждого из потоков, реализовывая оптимальную конструкцию. Основные достоинства данного типа теплообменников — компактность (до 4000 м²/м³) и легкость. Последнее обеспечивается за счет применения при изготовлении теплообменной матрицы пакета из тонколистовых деталей из легких алюминиевых сплавов.
  • Оребрённо-пластинчатые теплообменники. Такой теплообменник состоит из тонкостенных оребренных панелей, изготовленных методом высокочастотной сварки, соединенные поочередно с поворотом на 90 градусов. За счет конструкции, а также многообразия используемых материалов достигаются высокие температуры теплоносителей, небольшие гидравлические сопротивления, высокие показатели отношения телепередающей площади к массе теплообменника, длительный срок службы, низкая стоимость и др. Часто используются для утилизации тепла отходящих газов.
  • Теплообменники спиральные. Теплообменник представляет собой два спиральных канала, навитых из рулонного материала вокруг центральной разделительной перегородки — керна, среды движутся по каналам. Одно из назначений спиральных теплообменников —нагревание и охлаждение высоковязких жидкостей.

При выборе между пластинчатыми и кожухотрубными теплообменниками предпочтительными являются пластинчатые, коэффициент теплопередачи которых более чем в три раза больше, чем у традиционных кожухотрубных. При этом для решения одной и той же задачи по нагреву среды кожухотрубный теплообменник будет занимать площадь в 3-4 раза больше чем сравнимый по эффективности пластинчатый теплообменник или в 6-10 раз больше чем сравнимый по эффективности геликоидный теплообменник [4] [5] . В то же время иностранные пластинчатые теплообменники, оснащённые средствами автоматики, регулирования и надёжной арматурой, позволяют снизить количество теплоносителя, идущего на нагрев воды. А значит, и диаметры трубопроводов и запорно-регулирующей арматуры, снизить нагрузки на сетевые насосы и, соответственно, уменьшить потребление электроэнергии. В последнее время стали появляться современные отечественные геликоидные теплообменники, оснащенные трубками, профилированными таким образом, чтобы рост гидравлического сопротивления превышал рост теплоотдачи вследствие применения турбулизаторов потока. Это достигается накаткой на внешней поверхности трубы кольцевых или винтообразных канавок, вследствие образования которых на внутренней поверхности трубы образуются плавно очерченные выступы небольшой высоты, интенсифицирующие теплоотдачу в трубах. Данная технология, в дополнение к таким важным показателям как высокая надежность (также при гидравлическом ударе) и меньшая стоимость, дает отечественному теплообменному оборудованию дополнительные преимущества по сравнению с иностранными пластинчатыми аналогами. Серьёзной проблемой является коррозия теплообменников. Для защиты от коррозии применяется газотермическое напыление трубных досок, труб пароперегревателей. Это относится не только к кожухотрубным теплообменникам, изготовленным из углеродистой стали. Геликоидные теплообменники [4] и пластины пластинчатых теплообменников в подавляющем большинстве изготавливаются из коррозионно-стойкой жаропрочной стали, но несмотря на это, также подвержены питтинговой коррозии при использовании неингибированных теплоносителей.

Читайте так же:
Количества теплоты выделяемого в проводнике с электрическим током

Теплообменники: виды, устройство и принцип работы

Теплообменник – оборудование, в рабочем блоке которого налажен теплообмен между элементами с различными температурами.

Теплообменники

Как выглядят теплообменники

Достоинства систем отопления на основе теплообменников:

  • легкость в эксплуатации и простота технического обслуживания;
  • долговечность;
  • равномерность отопления больших площадей;
  • удобная система терморегулирования;
  • отсутствие громоздких радиаторов;
  • тепловой комфорт в помещении.

Материалы изготовлени

Технология получения теплообменивающих устройств предусматривает их изготовление из материалов: латунь, медь, силумин (кремниево-алюминиевый сплав), нержавеющая сталь. Выбор материала зависит от конечной цели использования оборудования. Медные устройства применимы при изготовлении пива, а латунь чаще выбирают для комплектации оборудования, использующего повышенное давление.

Сферы применения

Выделяют следующие сферы использования теплообменивающего оборудования:

  • системы охлаждения;
  • отопительные системы;
  • системы кондиционирования;
  • химическая промышленность;
  • обогрев бассейнов;
  • солнечные коллекторы;
  • машиностроение;
  • вентиляционные системы;
  • металлургия;
  • фармация;
  • автопроизводство;
  • пищевая промышленность.

Помимо этого, возможно применение теплообменивающего оборудования для отопления частных домовладений. Установить устройство можно как самостоятельно, так и с помощью мастера. Использование такой техники помогает равномерно распределить тепло в помещении.

Классификация

Классификация теплообменников предусматривает их деление на такие виды:

  • пластинчатые;
  • трубчатые.

Пластинчатые устройства включают набор пластин с волнистыми каналами со штамповкой и поверхностями, предназначенными для циркуляции жидкостей. Пластины соединены при помощи прорезиненных прокладок и стяжек. Преимущества подобных устройств – легкость в применении и компактность.

Пластинчатые теплообменники находят все более широкое применение. Сфера их использования не ограничивается только промышленным оборудованием, возможен также монтаж этих устройств в жилых домах для монтажа отопительных систем.

Пластинчатые теплообменники классифицируются на группы:

  • неразборные (они же сварные и паяные);
  • полусварные;
  • разборные.

Разборные устройства наиболее популярны. В них пластины разделены при помощи резиновых уплотнителей. Установка не занимает много времени, а эксплуатация не вызывает трудностей.

Классический вариант пластинчатых теплообменников имеет входные и выходные патрубки на поверхности передней плиты. Некоторые устройства имеют патрубки и на передней, и на задней панелях. Рабочие среды подсоединяются к патрубкам посредством фланцевых, резьбовых, стальных соединений. Некоторые модели имеют меньшее количество патрубков, тогда теплоносители подсоединяются непосредственно к плите.

Трубчатые теплообменники включают трубы малого диаметра, вваренные в другие трубы. Достоинствами устройства считается применение в условиях повышения давления.

По критерию способа теплообмена техника подразделяется на смесительную и поверхностную. Устройства смесительного типа передают тепло при плотномконтактировании носителей. Поверхностные теплообменники содержат два контура, в которых происходит перемещение сред с отличными температурами. Обмен теплом между ними возможен через поверхностные элементы пластин, стенок, листов или труб, которые выполнены из теплопроводящих материалов (нержавеющей или высокоуглеродистой стали, сплавов цветных металлов). Этот тип оборудования применяется в жилищно-коммунальном хозяйстве, промышленных предприятиях и в организации малого бизнеса.

Поверхностные теплообменники делятся виды: рекуперативные и регенеративные. Рекуперативные теплообменники характеризуются константным обменом тепла посредством стенок контуров при однонаправленном движении носителей. В регенеративных устройствах происходит поочередный контакт носителей с теплообменивающей поверхностью.

Рекуперативные теплообменники тоже классифицируются:

  1. Погружные. Принцип работы предусматривает движение одного теплоносителя по змеевику, который погружен в бак, содержащий второй жидкий теплоноситель. Модель отличается удобством в применении, характеризуется оптимальной стоимостью.
  2. Оросительные. Сфера применения – как конденсаторы в системах охлаждения. Теплобменники выглядят как змеевики из горизонтальных труб, которые размещены в вертикальной плоскости. У каждого ряда труб есть желоб, по которому на них стекает вода пониженной температуры. Вода, которая не испарилась, возвращается в систему благодаря насосу.
  3. Витые. Представляют собой систему труб, намотанных на сердечник. Компактны и высокоэффективны.
  4. Спиральные. Для оборудования характерен вид двух спиральных каналов, которыми обвита центральная перегородка. Предназначены для охлаждения и нагрева вязких жидкостей.
  5. Кожухотрубные. Трубные решетки присоединены к кожуху посредством сварки. В них закрепляются трубы. Крепление их происходит плотно при помощи развальцовки. Решетки закрыты крышками на шпильках, болтах и прокладках. Кожух включает штуцера (патрубки). Принцип работы заключен в циркуляции носителя тепла в межтрубном пространстве и по трубам. Увеличение теплоотдачи происходит при помощи оребрения.
  6. Секционные – последовательность секций, которые представляют собой кожухотрубные устройства.
  7. Пластинчатые. Включают набор пластин с волнистыми поверхностями со штамповкой и каналами для движения жидкостей. Возможна работа только при пониженном давлении.

Теплообменник

Строение и принцип работы

Механизм действия легко рассмотреть на примере пластинчатого теплообменника заводской сборки. Структура предусматривает два контура и четыре выхода. Пластинчатое устройство разделяет потоки по давлению и температуре. Теплоносителями выступают кислоты и другие жидкости.

Теплообменники для отопления предполагают подключение к одному контуру теплых полов, а к другому – теплоцентрали.

Прямое подключение центрального теплоносителя невозможно, поскольку это приводит к выходу из строя теплого напольного покрытия.

Это происходит из-за повышения давления в теплоцентрали, температурных перепадов и присутствия химически агрессивных веществ в теплоносителе.

Строение теплообменника представлено на рисунке ниже.

Схема

Схематичное устройство пластинчатого теплообменника

Структуру теплообменника составляют:

  • станина, которая с одной стороны устройства прикрепляется к неподвижной прижимной плите и служит элементом опоры;
  • пакет пластин, образующий между составляющими элементами каналы для теплоносителя;
  • рама, которая состоит из подвижной прижимной плиты , неподвижной прижимной плиты и задней стойки;
  • кожух, служащий для защиты устройства от внешних воздействий;
  • шпильки, которые размещены по краю отверстий, через которые в устройство поступает теплоноситель;
  • прокладка, необходимая для герметичности каналов;
  • опорные и крепежные элементы (направляющие балки, несущая база, лапы станины и рамы, подшипники, болты, гайки, шайбы).
Читайте так же:
Прохождение тока через металлический проводник сопровождается действиями только тепловыми

Синие и красные стрелки на рисунке обозначают направления движения холодного и горячего теплоносителя внутри теплообменника соответственно.

В быту применяют теплообменник, чей принцип функционирования основан на разделении потоков и поддержании автономного функционирования теплых полов при пониженном уровне рабочего давления в 1,5 бара и подключении чистой воды.

Структуру теплообменного оборудования составляют три группы пластин:

  1. Набранные, принадлежащие автономной системе отопления с пониженным уровнем давления.
  2. Набранные, принадлежащие центральной системе отопления с повышенным уровнем температуры и давления.
  3. Разделительные, характеризующиеся малой толщиной и передающие тепло от централизованной системы к автономной.

Число и параметры пластин предопределяют мощность теплообменного оборудования. Каждое устройство предполагает установку очистительного фильтра. Он способен удержать грубые частицы: окалины, стружку и прочие. Фильтр нуждается в периодическом промывании очистительными растворами.

Схема

Принцип работы теплообменника

Принцип работы теплообменника заключается в передаче тепловой энергии от одного теплоносителя к другому. В устройство поступает прямая греющая среда и холодная среда. При прохождении их между пластинами по каналам происходит нагревание холодной среды. На выходе из теплообменника получают нагретую среду и обратную греющую среду. Внутри оборудования теплообменивающие жидкости движутся навстречу друг другу, то есть в противотоке, и не могут смешиваться, поскольку разделены пластинами.

Характеристики оборудования

Теплообменное оборудование маркируется следующими данными:

  • уровень тестового давления;
  • уровень максимального рабочего давления;
  • уровень максимальной рабочей температуры;
  • производитель.

Помимо этого, в комплектацию входят схема и техпаспорт на языке страны-производителя, в нужных случаях переведенный на язык продающей страны.

Возможно диагональное и вертикальное расположение контуров. При диагональном расположении контуров требуется производить установку только в вертикальное положение. Тогда возможно поступление горячей воды в теплообменивающий аппарат в направлении сверху вниз. При этом происходит передача тепла в автономную систему посредством разделительных пластин.

Вода на входе – повышенной температуры, а на выходе она снижена. При этом в контуре, принадлежащем автономной системе, движение теплоносителя происходит снизу вверх. На нижних уровнях происходит слабый нагрев воды, при приближении к верхним – нагрев усиливается. Это облегчает функционирование системы. Подача воды в оборудование возможна благодаря принудительной циркуляции.

Монтаж

Монтаж пластинчатого теплообменника, как наиболее распространенного, осуществляется по трем вариантам:

  • параллельному;
  • смешанному двухступенчатому;
  • последовательному двухступенчатому.

При параллельном монтаже требуется установить терморегулятор. Этот способ экономит пространство, время, а также не требует больших затрат. Двухступенчатая смешанная схема обеспечивает значительную экономию теплоносителя. Это достигается благодаря использованию обратного тока теплой воды для обогрева потока с более низкой температурой.

Использование последовательной схемы применяет разделение входящего потока на две ветки. Одна из них проходит сквозь регулятор, другая – сквозь подогреватель. Далее оба потока смешиваются, после чего попадают в отопительный блок. Это экономит теплоноситель. Полная автоматизация оборудования невозможна.

Теплообменники закрепляются на стене с помощью крепежной ленты, консоли и уголка, прикрепленного к нижней части устройства. После этого требуется провести установку фильтров. Минимальное условие – присутствие фильтрующей системы в системе теплоцентрали. Перед установкой стоит подготовить краны и американки – резьбовые разъемные соединительные компоненты. Каждый из них включает в состав накидную гайку, прокладку и два фитинга. Важно правильно подбирать запчасти, чтобы они подходили к диаметру системы подключения. Тогда монтаж не вызовет затруднений.

Теплообменник

Внешний вид пластинчатого теплообменника

Буржуйка с теплообменником. Видео

Про особенности изготовления буржуйки из газовых баллонов с теплообменником можно узнать из видео ниже.

Несмотря на широту сфер применения теплообменников, наиболее популярным является их использование в качестве дополнительной системы отопления. Оптимальные технические характеристики обеспечивают качественный прогрев помещений любой площади. Установка полов с теплообменниками не занимает много времени, они просты в эксплуатации и долговечны. Необходимо своевременно проводить профилактические осмотры системы, чтобы своевременно устранять возможные проблемы.

Устройство и работа пластинчатого теплообменника

Пластинчатый теплообменник передает тепло от одной среды к другой с помощью одинаковых тонких пластин, изготовленных из титана или нержавеющей стали. Они удерживаются вместе с помощью тонкого зазора, поддерживаемого прокладочным материалом из резины и асбестового волокна. Они очень компактны и имеют дополнительное преимущество переменной емкости.

Из-за своей простой конструкции и большой поверхностной области пластины легко очистить и работать с теплообменным аппаратом. Он в основном состоит из шести основных частей, а именно: прижимная пластина, каркасная пластина, уходная штанга, направляющая штанга, пакет пластин и опорная стойка. В совокупности они образуют теплообменник пластинчатого типа, состоящий из пакета пластин из гофрированных металлических пластин с отверстиями для прохода текучей среды.

Пакет пластин удерживается на месте парой пластин; та, которая неподвижна, называется рамной пластиной, а та, которая может двигаться, называется прижимной пластиной. Даже количество пластин в пакете не является фиксированным, а определяется такими факторами, как расход, разность давлений, рабочая температура, типы жидкости и стоимость установки.

Одна металлическая пластина может иметь высокий или низкий тетра-рисунок, который способствует эффективному теплообмену между жидкостями. Эти типы гофрированных структур создают турбулентность в потоке, создавая гораздо лучший теплообмен между двумя средами. Плиты собраны таким образом, что горячее средство пропускает на одной стороне плиты пока холодные потоки на другом. Для лучшего теплообмена через металлическую пластину среды текут во встречном параллельном направлении.

Принцип Работы
Пластинчатый теплообменник работает по простому принципу теплопроводности и второму закону термодинамики. Он в основном состоит из пакета пластин с четырьмя отверстиями для входа и выхода теплой и холодной среды. Эти теплые и холодные среды протекают по альтернативным каналам; с различными средами на противоположных сторонах пластины. Прокладка вдоль гофрированной пластинчатой структуры защищает среду от смешивания или перетекания на другую сторону пластины.

Две текучие среды в системе следуют по встречному пути потока: одна жидкость входит сверху, выходя снизу, а другая входит снизу и выходит сверху. Скорость потока контролируется в системе, чтобы избежать негативных последствий турбулентного потока, таких как эрозия. Тип и длина пластины выбираются в соответствии с требованиями заказчика; скорость теплообмена и его эффективность зависят от размера и толщины металлической пластины.

Читайте так же:
Переменный ток тепловые действия переменного тока

С серией пластин, сделанных с очень тонким зазором; тонкий слой жидкости образуется по обе стороны металлической пластины. Это обеспечивает большую площадь поверхности для теплообмена. Пластина может иметь различную гофрированную структуру в зависимости от требуемой эффективности расхода и разницы температур между жидкостями. При правильной работе можно добиться теплопередачи с разницей температур всего в один градус.

Распределение потока пластинчатого теплообменника

Простейшим типом устройства пластинчатого теплообменника является тот, в котором обе жидкости имеют только один проход, поэтому никаких изменений в направлении потоков жидкости не происходит. Этот тип известен как однопроходная схема 1-1 и делится на два подмножества: встречный поток и параллельный поток.

Заметным преимуществом однопроходной компоновки является то, что входы и выходы жидкостей могут быть установлены на неподвижной плите, что позволяет легко обслуживать и чистить оборудование, не прерывая работу трубы. Эта конструкция известна как U-образное расположение и является наиболее распространенной однопроходной конструкцией. Другой однопроходной конструкцией является Z-образная компоновка, в которой имеются входы и выходы жидкостей через обе концевые пластины.

Встречный поток, где токи текут в противоположных направлениях, обычно предпочтительнее параллельного потока, где токи текут в том же направлении из-за более высокой достижимой тепловой эффективности.

Многопроходные устройства также могут быть использованы для увеличения скорости теплопередачи или потока жидкости. Эти устройства обычно требуются в тех случаях, когда существует значительная разница между расходами токов.

Теплопередача пластинчатого теплообменника

Общая скорость теплопередачи между жидкостями, проходящими через пластинчатый теплообменник, может быть выражена следующим уравнением:

где U, A и ∆Tm-общий коэффициент теплопередачи, общая площадь пластины и эффективная средняя разность температур соответственно. Общая площадь плиты может быть рассчитана следующим образом:

Np и Ap — это количество пластин (кроме торцевых пластин) и площадь каждой пластины.

Типы пластинчатых теплообменников

Существует два основных типа пластинчатых теплообменников, включая Паяные пластинчатые теплообменники (BPHE) и Пластинчатые и каркасные теплообменники.

Пластинчатые и каркасные теплообменники

Пластины образуют каркас, в который пластины запрессовываются коллекторами и стяжными тягами в пластинчатом теплообменнике, а прокладки поддерживают уплотнение. В дополнение к их герметизирующему эффекту прокладка работает для направления потока жидкостей и помещается вдоль канавок на краях пластин.

Максимальная температура, используемая для уплотнения теплообменников, составляет от 80 до 200°C, а давление может быть поднято до 25 бар. Прокладки существуют в различных типах бутилового или силиконового каучука.

Основными особенностями данного типа теплообменника являются следующие:

Быстрая и легкая разборка для очистки деталей и контроля операций.

Совместимость с переменными условиями труда путем добавления или исключения тепловых пластин для изменения установленного теплового потока.

Предотвращение загрязнения другой жидкости из-за любой утечки жидкости в результате неполного уплотнения шайб и направления ее в сторону.

Ограничение для максимальных значений давления и температуры из-за работы прокладок.

Возможность использования материалов, плохо приспособленных к пайке, например титана.

Высокие затраты обусловлены конструкцией пресс-форм, прессов и всех этапов строительства.

Высокая стоимость прокладок.

Паяные Пластинчатые Теплообменники

Паяные пластинчатые теплообменники не имеют коллектора, стяжек или прокладок, поскольку пластины паяются в печах при температуре 1100°C. На этапе сборки лист паяного материала (обычно медный, но также и никелевый) помещают между пластинами, плотно прижимают и затем выпекают в течение нескольких часов. Теплообменник BPHE более компактен и легче, чем теплообменник с прокладками.

Точки пересечения гофр двух соединенных пластин создают плотную сеть контактных точек, которые обеспечивают герметичность и вызывают закрученные потоки, усиливающие теплообмен. Таким образом, существует высокая турбулентность жидкостей даже при низких входных скоростях, и поток достигает от ламинарного до турбулентного при низких скоростях потока.

Мгновенно осознается, что путь, созданный флюидами, хаотичен. На самом деле поперечное сечение постоянно меняется. Основным недостатком этих теплообменников является то, что они не являются съемными. Поэтому техническое обслуживание и очистка нецелесообразны или, по крайней мере, сложны, и нет никакой гибкости, потому что количество пластин вообще не может быть изменено. Поверхность пластин гофрирована для увеличения турбулентности жидкости по каналам.

Оценка Пластинчатого теплообменника

Все пластинчатые теплообменники внешне выглядят одинаково. Внутри них есть различия в деталях конструкции пластин и применяемых технологиях герметизации. Следовательно, при оценке пластинчатого теплообменника необходимо изучить детали изделий и проанализировать этапы исследований и разработок, проводимых производителем, послепродажное обслуживание и наличие запасных частей.

Важной особенностью, которую следует учитывать при оценке теплообменника, является его рифленая форма. Существует два типа гофр: промежуточные и шевронные. Как правило, большее усиление теплопередачи через шевроны происходит из-за увеличения перепада давления. Таким образом, они более используются, чем чередующиеся гофры.

Преимущества и недостатки пластинчатого теплообменника


В этом разделе мы упомянем некоторые сильные и слабые стороны пластинчатых теплообменников по сравнению с кожухотрубными теплообменниками.

Преимущества

Простая разборка и различные конфигурации пластин обеспечивают гибкость пластинчатых теплообменников для совместимости с новыми технологическими приложениями путем простого добавления или удаления или перестановки пластин.

Узкие каналы между соседними пластинами обеспечивают небольшой объем жидкости, содержащейся в пластинчатом теплообменнике. Поэтому, прибор имеет быструю реакцию к изменениям с короткими временами запаздывания так, что температуры будут охотно проконтролированы.

Производство пластинчатых теплообменников практически недорого.

По сравнению с 50% рекуперацией тепла кожухотрубных теплообменников, до 90% тепла рекуперируется в пластинчатых теплообменниках из-за гофр пластин и малого гидравлического диаметра, вызывающих повышенную турбулентность и высокие скорости теплопередачи.

Для той же области теплопередачи пластинчатые теплообменники часто занимают на 80% меньше места, чем кожухотрубные теплообменники.

Недостатки

Важная слабость пластинчатых теплообменников связана со стандартными пластинчатыми прокладками, которые не выдерживают давления более 25 АТМ и температуры более 160 °С, вызывающих утечку.

Гофрированная конфигурация пластин и небольшие проточные пространства вызывают падение высокого давления из-за трения, что повышает затраты на перекачку.

Трение между пластинами может вызвать износ и, следовательно, образование небольших отверстий, которые трудно обнаружить.

Читайте так же:
Использование теплового действия электрического тока в промышленности

Хотя иногда пластинчатые теплообменники могут использоваться в процессах конденсации или испарения, они не рекомендуются для газов и паров из-за ограничений пространства внутри каналов и ограничений давления.

Другим ограничением является использование пластинчатых теплообменников при обработке высоковязких жидкостей или жидкостей, содержащих волокнистый материал, из-за связанного с этим падения высокого давления и проблем с распределением потока.

Производственный отдел kvip.su с опытом более 20 лет может предоставить:

аудит и выезд на производство;

расчеты от 2-3 часов после оставления заявки;

гарантию от 12 месяцев;

сопровождение в дальнейшем.

Напишите нам. Наши менеджеры свяжутся в Вами как можно быстрее.

Подписывайтесь на наш Телеграм канал, там всегда много полезного и интересного.

Тонкости и хитрости при расчете пластинчатых теплообменников

потери давления

Как влияет: При увеличении допустимых потерь давления стоимость теплообменника уменьшается, при уменьшении допустимы потерь давления стоимость теплообменника увеличивается (чем больше потери давления, тем дешевле теплообменник; чем меньше потери давления, тем дороже теплообменник)
Причина: Чем больше пластин в теплообменнике, тем больше каналов по которым проходит жидкость, тем меньшее сопротивление жидкость испытывает — тем выше стоимость теплообменника
и наоборот.
Что делают при расчете:Если в опросном листе указаны четко допустимые потери давления, то некоторые производители завышают их немного — полметра или метр, а то и в 1,5-2 раза в расчете на то, что заказчик вдруг не силен в теплотехнике и не обратит внимания на этот параметр. А теплообменник будет дешевле — значит вероятность продажи возрастает.
Вывод: Сверяйте расчетные потери давления с указанными Вами в опросном листе!

Параметр №2 — Запас поверхности теплообмена

запас по поверхности

Как влияет: Чем больше запас, тем выше стоимость
Причина: Чем больше пластин в теплообменнике, тем больше запас поверхности — тем выше стоимость теплообменника и наоборот.
Что делают при расчете:Серьезные производители практически всегда берут 10-15 % по поверхности в расчете. Он может немного сгладить погрешности в данных, чуть реже надо будет чистить теплообменник. Кто желает максимально удешевить теплообменник — всегда берет запас близко к нулю, не более 1%
Вывод: Сверяйте запас поверхности теплообмена в разных расчетах. И решайте что нужно больше — небольшая экономия или спокойствие при эксплуатации.

Параметр №3 — Коэффициент теплопередачи

коэфф-т теплопередачи

Как влияет: Чем выше коэффициент теплопередачи, тем эффективнее работает теплообменник, тем ниже его стоимость.
Причина: Коэффициент теплопередачи зависит от скорости течения жидкости. Чем выше скорость — тем интенсивнее идет теплообмен. А чтобы скорость была выше необходимо уменьшить кол-во каналов, т.е. уменьшить количество пластин.
Что делают при расчете: Некоторые производители считают теплообменники с максимальным коэффициентом теплопередачи от 7000 Вт/м.кв.*К и выше. При таком высоком коэффициенте сильно возрастает скорость образования отложений солей кальция, магния в теплообменнике. Т.е. первоначально теплообменник будет дешевле, то зарастать будет гораздо быстрее — чаще чистка, выше последующие расходы
Вывод: Смотрите, чтобы коэффициент теплопередачи не был в расчетах выше 7000 Вт/м.кв.*К! Видел расчеты и с коэффициентом 10000.

Параметр №4 — Диаметр присоединения

диаметр патрубков

Как влияет: Чем больше диаметр патрубков присоединения — тем выше стоимость теплообменника.
Причина: Больший диаметр означает использование большего типоразмера, что дает увеличение стоимости.
Что делают при расчете:С этим параметром хулиганят не всегда. Если расход точно укладывается в Ду 50 например, то ничего не попишешь. А вот если речь идет о пограничном значении когда можно применить меньший диаметр, то тут иногда так и поступают. Например вместо Ду50 берут типоразмер с Ду 32. Выходит сильно дешевле. Но при сужении проходящего сечения возрастает скорость жидкости, будут дополнительные потери давления в патрубках (не считая потерь в самом теплообменнике), возможны шумы. При долгой эксплуатации возможно разрушение пластины вокруг проходного сечения.
Вывод: Смотрите какой расход жидкости в теплообменнике в какой присоединительный диаметр хотят запустить!

Параметр №5 — Рабочее давление

рабочее давление

Как влияет: Чем выше рабочее давление — тем дороже теплообменник.
Причина: При более высоком рабочем давлении используются более «толстые» прижимные плиты в теплообменнике, могут быть использованы пластины более толстые.
Что делают при расчете:Если в расчете четко указано рабочее давление, то обычно с этим параметром не шутят. А вот если не указано, то многие норовят посчитать теплообменник на самое низкое рабочее давление — 6 или 10 кгс/см2.
Вывод: Сверяйте рабочее давление в расчете с тем, которые есть или будет у Вас!

Параметр №6 — Толщина и материал пластин

пластины толщина и сталь

Как влияет: Чем толще пластины — тем дороже теплообменник. Чем выше значение у материала пластин AISI — тем дороже теплообменник. AISI304 сильно дешевле AISI316.
Причина: Более толстые пластины дороже, к тому же их надо в теплообменнике больше — теплопередача хуже через более толстую стенку. В нержавеющей стали AISI316 больше никеля и молибдена чем в AISI304, что повышает ее коррозионостойкость.
Что делают при расчете: Некоторые производители используют более дешевую менее коррозионостойкую сталь AISI304, что снижает срок эксплуатации теплообменника. При чистых средах — тут не важно. А вот на гвс — это самоубийство 🙂 К хлору AISI304 очень неустойчива! При рабочем давлении в 10 кгс/см2 и меньше могут использовать пластины толщиной 0,4 мм (обычно 0,5 мм), что также снижает ресурс теплообменника.
Вывод: Обращайте внимание на толщину и материал пластин в теплообменнике, соотносите эти параметры с рабочим давлением у Вас, назначением теплообменника, качеством воды!

Еще могут оказывать влияние такие факторы как комплектация теплообменника ответными фланцами и пр. Но это уже ближе к коммерции, а не к инженерии — меньше железа за одинаковые деньги 🙂 Это совсем другая история, дойдем и до нее.

В заключение: У нас в компании такими вещами не занимаются. Большой опыт в этой сфере, знаем чем это заканчивается. Да и просто стыдно такое творить.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector