Дискретность, погрешность и класс точности лабораторных весов согласно ГОСТ
Дискретность, погрешность и класс точности лабораторных весов согласно ГОСТ
Основные характеристики весов — это пределы взвешивания, точность, дискретность и погрешность. С пределами взвешивания обычно никаких вопросов не возникает, но точность, дискретность и погрешность довольно часто между собой путают.
Про государственные стандарты для лабораторных весов
Требования к лабораторным весам ранее устанавливались в ГОСТе 24104-2001 «Весы лабораторные. Общие технические требования». Этот ГОСТ распространялся на весы, предназначенные для лабораторий различных предприятий и организаций. Срок его действия истек в 2010 году, и на данный момент на все весы (не только на лабораторные) действуют два стандарта:
- Российский ГОСТ Р 53228-2008 «Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания».
- И международный ГОСТ OIML R 76-1-2011 «Государственная система обеспечения единства измерений (ГСИ). Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания (с Поправкой)».
В них описаны основные термины и определения, дана стандартизация классов и испытаний. По техническому содержанию они одинаковы, но первый стандарт учитывает особенности российского законодательства, а второй специально создавался под соответствие международным стандартам. Обычно лабораторные весы сертифицируются по ГОСТ OIML R 76-1-2011, чтобы производители имели возможность продавать их в других странах.
Пределы взвешивания
Самая понятная характеристика. У весов их два — наибольший (НПВ или Max) и наименьший (НмПВ). Наибольший предел взвешивания — это максимальное значение нагрузки, а наименьший — это значение нагрузки, ниже которого результат взвешивания может иметь чрезмерную относительную погрешность. К примеру, на весах AnD HR-100 AZG можно взвешивать навески от 0,01 до 102 граммов.
Наибольший предел взвешивания не надо путать с предельной нагрузкой (Lim). Если навеска тяжелее НПВ, то весы не смогут её правильно измерить, а если навеска больше предельной нагрузки, то они просто сломаются.
Дискретность (цена деления)
Цена деления (d), согласно определению, это разность значений массы, соответствующих двум соседним отметкам шкалы весов с аналоговым отсчетным устройством, или значение массы, соответствующее дискретности отсчета цифровых весов.
Чем меньше цена деления, тем выше точность измерения. Пример: у весов ВЛТЭ-150 дискретность 0,01 г. Если у нас будет навеска 3,7562 г, то эти весы покажут, что она весит 3,76 г. А вот весы AnD HR-100 AZG с дискретностью 0,0001 г покажут более точное значение.
Цена поверочного деления (предельно допустимая погрешность)
Следующим важным для стандартов является цена поверочного деления e. Это условная величина, которая присутствует только в документах, но посредством которой определяется класс точности весов и осуществляется их поверка.
e определяет предельно допустимую погрешность весов. В большинстве весов с ценой деления порядка 0,01 г и выше e=d, то есть максимальная погрешность определения массы будет совпадать с ценой деления. Но в случае весов, предназначенных для взвешивания очень маленьких навесок, погрешность может быть выше.
Исходя из значения цены поверочного деления, для весов можно вычислить общее число поверочных делений: n=НПВ/е.
К примеру, у нас есть лабораторные весы ВЛТЭ-6100. НПВ у них 6100 г, цена деления 1 г, цена поверочного деления тоже 1 г (то есть у них выполняется условие e=d). Число поверочных делений будет: 6100 / 1 = 6100.
У упоминавшихся уже весов AnD HR-100 AZG НПВ равен 102 г, цена деления — 0,0001 г, цена поверочного деления 0,001 (e=10d). Для них число поверочных делений будет: 102 / 0,001 = 102 000.
Класс точности весов
На основе цены поверочного деления и наименьшего предела взвешивания весам присваивается класс точности.
Для весов класса точности ниже II e должно быть равно d. Для весов специального (I) и высокого (II) классов точности допускается e=2d, e=5d и даже больше, вплоть до e=1000d.
Преимущества класса точности 0,5S перед 0,5 для трансформаторов тока
В современном мире, экономия ресурсов, будь то полезные ископаемые, водные ресурсы или деньги, является одним из важнейших принципов успешной деятельности. А для энергетики экономия должна быть чуть ли не главной целью, так как цены на энергоносители постоянно увеличиваются.
В связи с этим, актуально будет провести сравнение классов точности 0,5S и 0,5, и оценить преимущества более точного класса над менее точным. А также, описать характеристики материалов, применяемых для изготовления магнитопроводов ТТ.
Коммерческий учет электроэнергии по стороне высокого напряжения (6-10кV) строится на основе измерительных ТТ, измерительных трансформаторов напряжения (ТН) и трехфазных счетчиков электроэнергии. Кроме этого большая часть измерительных ТТ имеет дополнительную защитную обмотку с которой подается сигнал на устройства релейной защиты при аварийных ситуациях.
Чтобы ответить на этот вопрос, рассмотрим график зависимости модуля предельной относительной погрешности ТТ для различных классов точности (Рисунок 1).
Рисунок 1. Графики модуля предельной относительной погрешности ТТ.
Из представленного графика видно, что для ТТ класса 0,5S погрешность нормируется начиная с 1% номинального тока и не может превышать 1,5%. Для ТТ класса 0,5 погрешность для 1% номинального тока не нормируется вообще, на 5% Iн составляет 1,5%, и даже на 20% Iн увеличивается до 0,75%.
К чему это приводит в коммерческом учете электроэнергии? В условиях спада и существенных колебаний нагрузки потребителей, ТТ значительное время работают в режиме действующего значения тока менее 20% Iн. Поскольку погрешность ТТ на малых токах всегда имеет отрицательное значение, применение ТТ класса 0,5 обязательно приведет к большему недоучету потребленной электроэнергии, чем при использовании ТТ класса 0,5S. Просчитаем величину этой разности в недоучете электроэнергии для случая трансформатора тока с номинальным током 150А.
Примем, что трансформатор тока 10 часов в сутки нагружен менее 20% номинального тока. Для промышленности это как правило время с 22.00 до 7.00, в коммунальном секторе это и ночное время, и время с 9.00 до 17.00. Будем считать, что среднее значение нагрузки в это время составляет 5% от номинальной. Разница погрешностей ТТ класса 0,5 и 0,5S на 5% нагрузки составляет 0,75%. Расчет потребленной электроэнергии для ТТ классов 0,5 и 0,5S проведем по формуле:
W0,5 = U * I * T * 0,985 = 738,750 кВт∙час
W0,5S = U * I * T * 0,9925 = 744,375 кВт∙час
U – напряжение (10кV)
I – ток (7,5А) (5%Iном)
T – 10 часов
Рисунок 2. Расчет потребленной энергии для ТТ классов 0,5 и 0,5S.
Таким образом, за одни сутки недоучет электроэнергии при применении ТТ кл. 0,5 составит 5,625 кВт∙час, а за год – 2053 кВт∙час, что при стоимости 1 кВт∙час 0,25грн. составит 500грн.
В сетях Украины находятся около 100 000 ТТ в основном класса 0,5, то есть, общий недоучет электроэнергии из-за использования ТТ низкого класса может составлять 205 300МВт∙час или 51млн гривен в год. На самом деле потери энергоснабжающих компаний из-за высокой погрешности измерений существующих ТТ значительно больше, так как по статистике Укрметртестстандарта до 15% предоставляемых на очередную поверку ТТ бракуются; их погрешность не соответствует требованиям даже по классу 0,5.
Погрешность трансформатора тока тем меньше, чем меньше магнитное сопротивление магнитопровода, то есть , чем больше магнитная проницаемость материала, больше сечение сердечника и меньше его длина, а также, чем меньше вторичная нагрузка.
Традиционно для материала сердечников ТТ применяется электротехническая сталь. В трансформаторах тока производства Компании «Бионтоп» измерительные сердечники выполнены из нанокристаллического сплава семейства «Finemet». Такие сплавы начали применяться в конце 80-х годов прошлого столетия в электротехнической промышленности США и Японии. Эти сплавы на основе железа, кремния, бора, ниобия и меди получают путем розлива расплава через тонкую
25мкм фильеру на поверхность вращающегося с большой скоростью охлаждаемого вала. При высокой скорости охлаждения (до 1 миллиона градусов в секунду) атомы сплава не успевают сформировать крупнокристаллическую решетку. Сплав, таким образом, приобретает аморфный, нанокристаллический характер, когда размеры кристаллов и доменов в тысячи раз меньше обычных и уникальные магнитно-электрические свойства.
На рис. 3 представлены типовые петли гистерезиса для электротехнической стали и нанокристаллического сплава.
Рисунок 3. Петля гистерезиса для электротехнической стали и нанокристаллического сплава.
Поскольку ТТ работают в установившемся режиме в малых полях, то для их изготовления необходимо использовать материалы не только с большой магнитной проницаемостью, но и с высокой начальной магнитной проницаемостью.
Сравним характеристики электротехнической стали и нанокристаллического сплава.
ГОСТ 24104-2001
OIML R 76-1-2011
Классы точности весов
Основные положения стандартов
С 01.07.2001 г. принят ГОСТ 24104-2001 (взамен устаревшего ГОСТ 24104-1988). Данный ГОСТ выпущен на основе OIML и подразделяет весы на 3 класса точности, взамен ранее применяемых 4х классов:
- I специальный класс точности весов,
Ключевым параметром, определяющим применимость и качество весового оборудования однозначно является его точность. Для всех средств измерений устанавливается класс точности, и это в дальнейшем отражает их метрологические характеристики и применимость для клиента.
Метрологические характеристики устанавливаются в соответствии с нормативно-техническими документами. Установленные этими документами характеристики называются нормируемыми, а когда их определяют экспериментальным путем, становятся – действительными. Правила выбора комплексов нормируемых метрологических характеристик для измерительных средств и способы их нормирования определены стандартом ГОСТ 8.009-84 «ГСИ. Нормируемые метрологические характеристики средств измерений».
К основным характеристикам измерительных приборов относят: основную и дополнительную погрешность.
Существуют определенные классы точности и пределы допустимых погрешностей, прописанные в государственных стандартах. На сегодняшний день, для обозначения точности весового прибора используется ГОСТ OIML R 76-1-2011.
Формы выражения пределов погрешностей
Пределы погрешностей могут быть выражены в форме абсолютной, приведенной или относительной погрешности. Форма выражения погрешности для измерительных средств определяется в соответствии с их видом, свойствами, принципом действия, назначением и других факторов, влияющих на характер погрешности.
Параметры точности и погрешности весов
В весоизмерительных оборудованиях существует наибольший(НПВ) и наименьший(НМПВ) предел взвешивания весов. Наибольший предел взвешивания — это верхняя граница предела взвешивания. НПВ определяет самую большую массу при взвешивании на весах за один раз. Наименьший предел взвешивания — это нижняя граница предела взвешивания. НМПВ определяет какой наименьший вес можно взвесить на весах с допустимой степенью погрешности.
Цена деления весов
Предельно допустимая погрешность у весов обозначается величиной «e», ее еще называют «цена поверочного деления». Предельно допустимая погрешность должна быть не более определенной по нормативным документам. Она указывается заводом изготовителем при производстве весов. Дискретность – это значение, изменяющееся между несколькими различными стабильными состояниями. В качестве примера можно привести механические часы, в которых минутная стрелка перемещается скачкообразно, т.е. дискретно, на одну шестидесятую целой окружности циферблата. Дискретность обозначается как «d». Предельно допустимая погрешность весов определяется ценой поверочного деления e. Производители весов и весового оборудования весов гарантирует следующее соотношение: d = e. Чем ниже погрешность на весах, тем выше точность измерений весового прибора. Погрешность весов в диапазоне измерений по абсолютному значению не должна превышать пределов допускаемой погрешности.
Стандарт класса точности электросчетчика
Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования, изложенных в предыдущих главах.
Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измеререний, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.
Для остальных средств измерений обозначение классов точности вводится в зависимости от способов задания пределов допускаемой основной погрешности.
Пределы допускаемой абсолютной основной погрешности могут задаваться либо в виде одночленной формулы
либо в виде двухчленной формулы
Более предпочтительным является задание пределов допускаемых погрешностей в форме приведенной или относительной погрешности.
Пределы допускаемой приведенной основной погрешности нормируются в виде одночленной формулы
Пределы допускаемой относительной основной погрешности могут нормироваться либо одночленной формулой
либо двухчленной формулой
В обоснованных случаях пределы допускаемой абсолютной или относительной погрешности можно нормировать по более сложным формулам или даже в форме графиков или таблиц.
Средствам измерений, пределы допускаемой основной погрешности которых задаются относительной погрешностью по одночленной формуле (93), присваивают классы точности, выбираемые из ряда чисел р и равные соответствующим пределам в процентах. Так для средства измерений с класс точности обозначается .
Если пределы допускаемой основной относительной погрешности выражаются двухчленной формулой (94), то класс точности обозначается как c/d , где числа с и d выбираются из того же ряда, что и р , но записываются в процентах. Так, измерительный прибор класса точности характеризуется пределами допускаемой основной относительной погрешности
Классы точности средств измерений, для которых пределы допускаемой основной приведенной погрешности нормируются по формуле (92), обозначаются одной цифрой, выбираемой из ряда для чисел р и выраженной в процентах. Если, например, , то класс точности обозначается как 0.5 (без кружка).
Классы точности обозначаются римскими цифрами или буквами латинского алфавита для средств измерений, пределы допускаемой погрешности которых задаются в форме графиков, таблиц или сложных функций входной, измеряемой или воспроизводимой величины. К буквам при этом допускается присоединять индексы в виде арабской цифры. Чем меньше пределы допускаемой погрешности, тем ближе к началу алфавита должна быть буква и тем меньше цифра. Недостатком такого обозначения класса точности является его чисто условный характер.
В заключение данного раздела следует отметить, что никакое нормирование погрешностей средств измерений само по себе не может обеспечить единства измерений. Для достижения единства измерений необходима регламентация самих методик проведения измерений.