Azotirovanie.ru

Инженерные системы и решения
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Диатермия, диатермокоагуляция, электротомия

Диатермия, диатермокоагуляция, электротомия

Метод ДИАТЕРМИИ основан на хорошо известном эффекте Джоуля. На тело пациента накладываются электроды терапевтического контура (см. рис.1). Протекающий по цепи высокочастотный ток (1,5-2МГц) создает тепловой эффект в тканях (см. рис. 2).

Количество теплоты q, выделяемое в единицу времени в единице объема ткани, может быть рассчитано на основании закона Джоуля-Ленца по формуле:

(1)

где: удельное сопротивление ткани;

— плотность тока.

При диатермии кожа и подкожная клетчатка нагреваются сильнее, чем мышцы и другие хорошо проводящие ткани.

Кожа и подкожная

Электрод 1 клетчатка

Переменный ток

Метод диатермии предполагает очень плотный контакт тела пациента с электродами, т.к. при нарушении контакта вследствие возрастания плотности тока могут возникнуть ожоги. В настоящее время диатермия применяется мало — ее заменяют более эффективные бесконтактные методы: УВЧ-терапия, индуктотермия и микроволновая терапия.

ДИАТЕРМОКОАГУЛЯЦИЯ и ЭЛЕКТРОТОМИЯ — хирургические методы сваривания и рассечения тканей с использованием высокочастотного переменного тока.

Один из электродов (активный) при диатермокоагуляции (электрокоагуляции) имеет форму маленького шарика, второй остается плоским с достаточно большой площадью поверхности.

Точечный электрод плотно прижимается к ткани, после чего включается ток. При этом максимальная плотность тока будет в малом объеме около активного электрода (рис. 3). Нагрев ткани под электродом до 60-80 о вызывает свертывание белков.

При электротомии активный электрод имеет форму тонкого лезвия, поэтому нагрев ткани под электродом происходит еще более интенсивно (больше плотность тока). Мгновенное испарение (со взрывом) клеточной и межклеточной жидкости приводит к рассечению ткани.

Область большой

плотности тока

Индуктотермия

Метод индуктотермии отличается от диатермии тем, что тепловой эффект достигается не высокочастотным электрическим током, а наведенными высокочастотным магнитным полем (10-15МГц) вихревыми токами (токи Фуко).

В этом методе свободные клеммы терапевтического контура подсоединяются к катушке индуктивности (индуктору), содержащей несколько витков гибкого изолированного провода, который либо обмотан вокруг конечности человека (в виде соленоида), либо сложен в плоскую спираль. Быстропеременное магнитное поле индуцирует электрическое поле в тканях организма, которое имеет особую, вихревую структуру и приводит к образованию вихревых токов. Основное тепловыделение при индуктотермии происходит в тканях с высоким содержанием электролита (кровь, лимфа).

Рассмотрим этот вопрос подробнее. Если биологическая ткань, обладающая удельной электропроводностью ,помещена в однородное переменное магнитное поле с индукцией ( ) и частотой ( ) (рис. 4), а индукция магнитного поля изменяется по гармоническому закону, то скорость изменения магнитного поля можно представить в виде выражения:

. (2)

Тогда на основании закона электромагнитной индукции мгновенные значения индукционного тока :

,

эффективное значение индукционного тока IВ:

, (3)

где — эффективное значение индукции магнитного поля.

( )

Биологическая

Рис. 4. B – линии магнитной индукции ( ),

— мгновенные значения индукционного тока.

Тогда удельная мощность, выделяемая в тканях:

, (4)

где некоторый коэффициент пропорциональности.

Таким образом, количество теплоты q, выделившееся при индуктотермии в единице объема за единицу времени, прямо пропорционально квадрату частоты и квадрату магнитной индукции и обратно пропорционально удельному сопротивлению тканей.

Индуктотермия вызывает усиление тормозных процессов в коре головного мозга; генерализованные сосудистые реакции; повышение местной и, незначительное, общей температуры тела; влияет на обменные процессы; изменение свертывающей и антисвертывающей системы крови.

Метод индуктотермии эффективен при лечении хронических воспалительных процессов, возникающих как поверхностно, так и в глубоко лежащих тканях.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Открыт в 1840 году независимо Джеймсом Джоулем и Эмилием Ленцом.

В словесной формулировке звучит следующим образом – Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:
гдеw — мощность выделения тепла в единице объёма, — плотность электрического тока, — напряжённость электрического поля, σ — проводимость среды.

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах:

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка

В математической форме этот закон имеет вид:
где dQ — количество теплоты, выделяемое за промежуток времени dt, I— сила тока, R — сопротивление,Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2.

В случае постоянных силы тока и сопротивления:

Законы Кирхгофа

Законы Кирхгофа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока. Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Применение правил Кирхгофа к цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи.

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.
В этом случае законы формулируются следующим образом.

Читайте так же:
Формула количества теплоты для переменного тока

Первый закон (ЗТК, Закон токов Кирхгофа) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит pузлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон(ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений:

для переменных напряжений:

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.
Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.
В соответствии со вторым законом, справедливы соотношения:

Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае — отрицательным.

Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.

Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.

ЗАКОН ПОЛНОГО ТОКА

ЗАКОН ПОЛНОГО ТОКА один из основных законов электромагнитного поля. Устанавливает взаимосвязь между магнитной силой и величиной тока, проходящего через поверхность. Под полным током понимается алгебраическая сумма токов, пронизывающих поверхность, ограниченную замкнутым контуром.

Намагничивающая сила вдоль контура равна полному току, проходящему сквозь поверхность, ограниченную этим контуром. В общем случае напряженность поля на различных участках магнитной линии может иметь разные значения, и тогда намагничивающая сила будет равна сумме намагничивающих сил каждой линии.

Закон Джоуля — Ленца

Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока. Открыт в 1840 году независимо Джеймсом Джоулем и Эмилием Ленцом.

В словесной формулировке звучит следующим образом:

Мощность тепла, выделяемого в единице объёма среды при протекании электрического тока, пропорциональна произведению плотности электрического тока на величину электрического поля

Математически может быть выражен в следующей форме:

гдеw — мощность выделения тепла в единице объёма, — плотность электрического тока, — напряжённость электрического поля, σ — проводимость среды.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ, закон Фарадея – закон, устанавливающий взаимосвязь между магнитными и электрическими явлениями. ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Величина ЭДС поля зависит от скорости изменения магнитного потока.

ЗАКОНЫ ФАРАДЕЯ(по имени английского физика М.Фарадея (1791-1867)) – основные законы электролиза.

Устанавливают взаимосвязь между количеством электричества, проходящего через электропроводящий раствор (электролит), и количеством вещества, выделяющегося на электродах.

При пропускании через электролит постоянного тока Iв течение секунды q = It, m = kIt.

Второй закон ФАРАДЕЯ: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам.

Правило буравчика

Правило Буравчика (также, правило правой руки) — мнемоническое правило для определения направления вектора угловой скорости, характеризующей скорость вращения тела, а также вектора магнитной индукцииB или для определения направления индукционного тока.

Определяет направление индукционного тока в проводнике, движущемся в магнитном поле

Правило правой руки

Правило правой руки

Правило буравчика: «Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции».

Определяет направление индукционного тока в проводнике, движущемся в магнитном поле

Правило правой руки: «Если ладонь правой руки расположить так, чтобы в нее входили силовые линии магнитного поля, а отогнутый большой палец направить по движению проводника, то четыре вытянутых пальца укажут направление индукционного тока».

Для соленоида оно формулируется так: «Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида».

Читайте так же:
Когда количество теплоты равно работе электрического тока

Правило левой руки

Правило левой руки

Если движется заряд, а магнит покоится, то для определения силы действует правило левой руки: «Если левую руку расположить так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно ей, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей силы Лоренца или Ампера.»

Высокочастотный индукционный нагрев. Расчет индукционного нагрева

В индукционных печах и устройствах тепло в нагреваемом приборе выделяется токами, возникающими в переменном электромагнитном поле внутри агрегата. Называются они индукционными. В результате их действия происходит повышение температуры. Индукционный нагрев металлов основывается на двух главных физических законах:

  • Фарадея-Максвелла;
  • Джоуля-Ленца.

В металлических телах при их помещении в переменное поле начинают возникать вихревые электрические поля.

Устройство индукционного нагрева

Все происходит следующим образом. Под действием переменного магнитного потока изменяется электродвижущая сила (ЭДС) индукции.

индукционный нагрев

Этот вид нагрева самый простой, так как является бесконтактным. Он позволяет достигать очень высоких температур, при которых можно обрабатывать самые тугоплавкие металлы.

Чтобы обеспечить индукционный нагрев, требуется создать в электромагнитных полях определенное напряжение и частоту. Сделать это можно в специальном приборе – индукторе. Питание его производится от промышленной сети в 50 Гц. Можно для этого использовать индивидуальные источники питания – преобразователи и генераторы.

Самое простое устройство индуктора небольшой частоты – спираль (проводник изолированный), который может быть помещен внутрь металлической трубы или намотан на нее. Проходящие токи нагревают трубу, которая, в свою очередь, передает тепло в окружающую среду.

Применение индукционного нагрева на малых частотах — достаточно редко. Более распространена обработка металлов на средней и высокой частоте.

установка индукционного нагрева

Где используются

Применение индукционного нагрева в современном мире широко распространено. Область использования:

  • плавка металлов, их пайка бесконтактным способом;
  • получение новые сплавов металлов;
  • машиностроение;
  • ювелирное дело;
  • изготовление небольших деталей, которые могут быть повреждены при применении других методов; (причем детали могут быть самой сложной конфигурации);
  • термообработка (обработка деталей для машин, закаленных поверхностей);
  • медицина (дезинфекция приборов и инструментов).

Индукционный нагрев: положительные характеристики

У такого способа немало преимуществ:

  • С его помощью можно быстро нагреть и расплавить любой проводящий ток материал.
  • Позволяет производить нагрев в любой среде: в вакууме, атмосфере, жидкости, не проводящей ток.
  • За счет того что нагревается только проводящий материал, стенки, слабо поглощающие волны, остаются холодными.
  • В специализированных областях металлургии получение сверхчистых сплавов. Это занимательный процесс, ведь металлы перемешиваются в подвешенном состоянии, в оболочке из защитного газа.

применение индукционного нагрева

  • В сравнении с другими типами, индукционный не загрязняет окружающую среду. Если в случае с газовыми горелками загрязнение присутствует, так же как и в дуговом нагреве, то индукционный это исключает, за счет «чистого» электромагнитного излучения.
  • Малые размеры прибора индуктора.
  • Возможность изготовления индуктора любой формы, это не приведет к локальному нагреву, а будет способствовать равномерному распределению тепла.
  • Незаменим, если необходимо нагреть только определенный участок поверхности.
  • Не составляет большого труда настроить такое оборудование на нужный режим и регулировать его.

Недостатки

Система имеет такие минусы:

  • Самостоятельно установить и наладить тип нагрева (индукционный) и его оборудование довольно непросто. Лучше обратиться к специалистам.
  • Необходимость точно сопоставить индуктор и заготовку, иначе недостаточным будет индукционный нагрев, мощность его может достигать малых величин.

Отопление индукционным оборудованием

Для обустройства индивидуального отопления можно рассмотреть такой вариант, как индукционный нагрев.

тип нагрева индукционный

Как работает

Принцип работы обычного индуктора: вихревые потоки проходят внутри и направляют электрическое поле на второй корпус.

Чтобы через такой котел проходила вода, к нему подводят два патрубка: для холодной, что поступает, и на выходе теплой воды – второй патрубок. За счет давления вода постоянно циркулирует, что исключает возможность нагрева элемента индуктора. Наличие накипи здесь исключено, так как в индукторе происходят постоянные вибрации.

Такой элемент в обслуживании будет недорогим. Главный плюс в том, что прибор работает бесшумно. Устанавливать его можно в любом помещении.

Изготовление оборудования самостоятельно

Установка индукционного нагрева большой сложности не составит. Даже тот, кто не имеет опыта, после тщательного изучения справится с поставленной задачей. Перед началом работы нужно запастись следующими необходимыми элементами:

  • Инвертор. Его можно использовать от сварочного аппарата, он недорогой и будет необходимой высокой частоты. Изготовить его можно самостоятельно. Но это затратное занятие по времени.
  • Корпус нагревателя (для этого подойдет кусок пластиковой трубы, индукционный нагрев трубы в этом случае будет самым эффективным).
  • Материал (сгодится проволока диаметром не более семи миллиметров).
  • Приспособления для подключения индуктора к сети отопления.
  • Сетка для удержания проволоки внутри индуктора.
  • Индукционною катушку можно создать из медной проволоки (она должна быть эмалированной).
  • Насос (для того, чтобы вода подавалась в индуктор).

Правила изготовления оборудования самостоятельно

Для того чтобы установка индукционного нагрева работала правильно, ток для такого изделия должен соответствовать мощности (составлять он должен не меньше 15 ампер, если требуется, то можно больше).

  • Проволока должна быть нарезана на куски не более пяти сантиметров. Это нужно для эффективного нагрева в высокочастотном поле.
  • Корпус должен быть по диаметру не меньше, чем подготовленная проволока, и обладать толстыми стенками.
  • Для крепления к сети отопления на одну сторону конструкции крепится специальный переходник.
  • На дно трубы нужно положить сетку для предотвращения выпадения проволоки.
  • Последняя нужна в таком количестве, чтобы она заполнила все внутреннее пространство.
  • Конструкция закрывается, ставится переходник.
  • Затем сооружают из этой трубы катушку. Для этого обматывают ее уже заготовленной проволокой. Число витков нужно соблюсти: минимум 80, максимум 90.
  • После подключения к системе отопления в аппарат заливают воду. Катушку подключают к заготовленному инвертору.
  • Устанавливается насос для подачи воды.
  • Монтируется регулятор температуры.
Читайте так же:
Тепловое воздействие тока короткого замыкания

расчет индукционного нагрева

Таким образом, расчет индукционного нагрева будет зависеть от следующих параметров: длина, диаметр, температура и время обработки. Обращайте внимание и на индуктивность подводящих к индуктору шин, которая может быть намного больше показателей самого индуктора.

Про варочные поверхности

Еще одно применение в домашнем обиходе, кроме системы отопления, данный вид нагрева нашел в варочных панелях плит.

индукционная зона нагрева

Тепло будет выделяться только тогда, когда на поверхность панели поставят посуду.

устройство индукционного нагрева

Для таких плит нужна специальная посуда. Большинство ферромагнитных металлов могут взамодействовать с индукционным полем: алюминий, нержавеющая и эмалированная сталь, чугун. Не подходят для таких поверхностей только: медная, керамическая, стеклянная и изготовленная из неферромагнитных металлов посуда.

Естественно, что индукционная плита включится только тогда, когда подходящая посуда будет на ней установлена.

Теплота выделяемая индукционным током

Электрический ток в любом участке цепи выполняет определенную работу. Для примера возьмем какой-либо участок цепи, между концами которого имеется напряжение (U). По определению электрического напряжения, работа, совершаемая при перемещении единицы заряда между двумя точками, равна U. Если сила тока на данном участке цепи равна i, то за время t пройдет заряд it, и поэтому работа электрического тока в этом участке будет:

Это выражение справедливо для постоянного тока в любом случае, для какого угодно участка цепи, который может содержать проводники, электромоторы и пр. Мощность тока, т.е. работа в единицу времени, равна:

Эту формулу применяют в системе СИ для определения единицы напряжения.

Предположим, что участок цепи представляет собой неподвижный проводник. В этом случае вся работа превратится в тепло, которое выделится в этом проводнике. Если проводник однородный и подчиняется закону Ома (сюда относятся все металлы и электролиты), то:

где r — сопротивление проводника. В таком случае:

Этот закон впервые опытным путем вывел Э. Ленц и, независимо от него, Джоуль.

Следует отметить, что нагревание проводников находит многочисленное применение в технике. Самое распространенное и важное среди них — осветительные лампы накаливания.

Закон электромагнитной индукции

В первой половине XIX века английский физик М. Фарадей открыл явление магнитной индукции. Этот факт, став достоянием многих исследователей, дал мощный толчок развитию электро- и радиотехники.

В ходе опытов Фарадей выяснил, что при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную замкнутым контуром, в нем возникает электрический ток. Это и является основой, пожалуй, самого важного закона физики — закона электромагнитной индукции. Ток, который возникает в контуре, назвали индукционным. В связи с тем что электроток возникает в цепи только в случае воздействия на свободные заряды сторонних сил, то при изменяющемся магнитном потоке, проходящем по поверхности замкнутого контура, в нем появляются эти самые сторонние силы. Действие сторонних сил в физике называется электродвижущей силой или ЭДС индукции.

Электромагнитная индукция появляется также в незамкнутых проводниках. В том случае когда проводник пересекает магнитные силовые линии, на его концах возникает напряжение. Причиной появления такого напряжения становится ЭДС индукции. Если магнитный поток, проходящий сквозь замкнутый контур, не меняется, индукционный ток не появляется.

При помощи понятия «ЭДС индукции» можно рассказать о законе электромагнитной индукции, т.е. ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило Ленца. Как мы уже знаем, в проводнике возникает индукционный ток. В зависимости от условий своего появления он имеет разное направление. По этому поводу русский физик Ленц сформулировал следующее правило: индукционный ток, возникающий в замкнутом контуре, всегда имеет такое направление, что создаваемое им магнитное поле не дает магнитному потоку изменяться. Все это вызывает возникновение индукционного тока.

Индукционный ток, так же как и любой другой, имеет энергию. Значит, в случае возникновения индукционного тока появляется электрическая энергия. Согласно закону сохранения и превращения энергии, вышеназванная энергия может возникнуть только за счет количества энергии какого-либо другого вида энергии. Таким образом, правило Ленца полностью соответствует закону сохранения и превращения энергии.

Помимо индукции, в катушке может появляться так называемая самоиндукция. Ее суть заключается в следующем. Если в катушке возникает ток или его сила изменяется, то появляется изменяющееся магнитное поле. А если изменяется магнитный поток, проходящий через катушку, то в ней возникает электродвижущая сила, которая называется ЭДС самоиндукции.

Читайте так же:
Прохождение тока через металлический проводник сопровождается действиями только тепловыми

Согласно правилу Ленца, ЭДС самоиндукции при замыкании цепи создает помехи силе тока и не дает ей возрастать. При выключении цепи ЭДС самоиндукции снижает силу тока. В том случае, когда сила тока в катушке достигает определенного значения, магнитное поле перестает изменяться и ЭДС самоиндукции приобретает нулевое значение.

Индукционный нагрев — Induction heating

Индукционный нагрев представляет собой процесс нагрева электропроводящего объекта (обычно металла) посредством электромагнитная индукция, за счет тепла, выделяемого в объекте вихревые токи. Индукционный нагреватель состоит из электромагнит и электронный генератор который проходит высокочастотный переменный ток (AC) через электромагнит. Быстро меняющиеся магнитное поле проникает в объект, генерируя электрические токи внутри проводника, называемые вихревыми токами. Вихревые токи, протекающие через сопротивление материала нагревают его Джоулевое нагревание. В ферромагнитный (и ферримагнитный) материалов, таких как железо, тепло может также генерироваться гистерезис убытки. В частота Используемый ток зависит от размера объекта, типа материала, связи (между рабочей катушкой и нагреваемым объектом) и глубины проникновения.

Важной особенностью процесса индукционного нагрева является то, что тепло генерируется внутри самого объекта, а не от внешнего источника тепла за счет теплопроводности. Таким образом предметы можно нагревать очень быстро. Кроме того, нет необходимости в каком-либо внешнем контакте, что может быть важно, когда загрязнение является проблемой. Индукционный нагрев используется во многих промышленных процессах, таких как термообработка в металлургия, Рост кристаллов Чохральского и зона очистки используется в полупроводниковой промышленности и для плавления тугоплавкие металлы которые требуют очень высоких температур. Он также используется в индукционных плитах для нагрева емкостей с едой; это называется индукционное приготовление.

Содержание

Приложения

Индукционный нагрев позволяет целенаправленно нагревать применимый элемент для таких применений, как поверхностная закалка, плавление, пайка и пайка и нагрев по размеру. Железо и его сплавы лучше всего реагируют на индукционный нагрев из-за их ферромагнитной природы. Однако вихревые токи могут возникать в любом проводнике, и магнитный гистерезис может встречаться в любом магнитном материале. Индукционный нагрев использовался для нагрева жидких проводников (например, расплавленных металлов), а также газовых проводников (например, газовой плазмы — см. Индукционная плазменная технология). Индукционный нагрев часто используется для нагрева графитовых тиглей (содержащих другие материалы) и широко используется в полупроводниковой промышленности для нагрева кремния и других полупроводников. Частота коммунальных услуг Индукционный нагрев (50/60 Гц) используется во многих недорогих промышленных приложениях, как инверторы не требуются.

An индукционная печь использует индукцию для нагрева металла до точки плавления. После расплавления высокочастотное магнитное поле также можно использовать для перемешивания горячего металла, что полезно для обеспечения полного смешивания легирующих добавок с расплавом. Большинство индукционных печей состоит из трубы из медных колец с водяным охлаждением, окружающих емкость с огнеупорный материал. Индукционные печи используются в большинстве современных литейных производств как более чистый метод плавления металлов, чем отражательная печь или купол. Размеры варьируются от килограмма вместимости до ста тонн. Индукционные печи во время работы часто издают пронзительный вой или гул, в зависимости от их рабочей частоты. Плавленые металлы включают железо и сталь, медь, алюминий и драгоценные металлы. Поскольку это чистый и бесконтактный процесс, его можно использовать в вакууме или инертной атмосфере. В вакуумных печах используется индукционный нагрев для производства специальных сталей и других сплавов, которые окисляются при нагревании в присутствии воздуха.

Сварка

Аналогичный, менее масштабный процесс используется для индукционной сварки. Пластмассы также могут свариваться индукционной сваркой, если они легированы ферромагнитной керамикой (где магнитный гистерезис частиц обеспечивает необходимое тепло) или металлическими частицами.

Таким образом можно сваривать швы трубок. Токи, наводимые в трубе, проходят по открытому шву и нагревают края, в результате чего температура становится достаточно высокой для сварки. На этом этапе края шва сжимаются и шов сваривается. Радиочастотный ток также может передаваться в трубку щетками, но результат остается тем же: ток течет по открытому шву, нагревая его.

Производство

В процессе аддитивной печати металлов с помощью быстрой индукционной печати сырье для проводящей проволоки и защитный газ подают через спиральное сопло, подвергая сырье индукционному нагреву и выталкиванию из сопла в виде жидкости, чтобы под защитой не образовывалось трехмерное изображение. металлические конструкции. Основным преимуществом процедурного использования индукционного нагрева в этом процессе является значительно большая эффективность использования энергии и материалов, а также более высокая степень безопасности по сравнению с другими методами аддитивного производства, такими как селективное лазерное спекание, которые передают тепло материалу с помощью мощного лазера или электронного луча.

Готовка

При приготовлении на индукционной плите катушка внутри варочной панели нагревает железное дно посуды за счет магнитной индукции. Использование индукционных плит обеспечивает безопасность, эффективность (индукционная плита не нагревается сама по себе) и скорость. Сковороды из цветных металлов, такие как сковороды с медным дном и алюминий сковороды вообще не подходят. Благодаря индукции тепло, вызванное основанием, передается находящейся внутри пище за счет теплопроводности. [1]

Читайте так же:
Номинальный ток теплового расцепителя автоматического выключателя

Пайка

Индукционная пайка часто используется при больших объемах производства. Он дает однородные результаты и очень повторяемый. Индукционная пайка используется во многих типах промышленного оборудования. Например, индукционная пайка используется для припаивания карбида к валу.

Уплотнение

Индукционный нагрев используется в крышка уплотнения тары в пищевой и фармацевтической промышленности. Слой алюминиевой фольги помещается на отверстие бутылки или банки и нагревается индукцией, чтобы сплавить его с контейнером. Это обеспечивает защиту от несанкционированного доступа, так как изменение содержимого требует разрыва фольги. [2]

Отопление по размеру

Индукционный нагрев часто используется для нагрева предмета, вызывающего его расширение перед установкой или сборкой. Подшипники обычно нагреваются таким образом с использованием рабочей частоты (50/60 Гц) и сердечника трансформаторного типа из многослойной стали, проходящего через центр подшипника.

Термическая обработка

Индукционный нагрев часто используется при термической обработке металлических изделий. Наиболее распространенные приложения: индукционная закалка стальных деталей, индукция пайка/ пайка как средство соединения металлических деталей и индукции отжиг выборочно размягчить участок стальной детали.

Индукционный нагрев может обеспечивать высокую плотность мощности, которая позволяет за короткое время взаимодействия достичь требуемой температуры. Это обеспечивает жесткий контроль за схемой нагрева, при этом узор довольно точно следует приложенному магнитному полю, и позволяет снизить тепловые искажения и повреждения.

Эту способность можно использовать при закалке для изготовления деталей с различными свойствами. Наиболее распространенный процесс упрочнения — это локализованное поверхностное упрочнение области, которая требует износостойкости, при сохранении прочности исходной структуры по мере необходимости в другом месте. Глубину индукционной закалки можно регулировать путем выбора индукционной частоты, плотности мощности и времени взаимодействия.

Ограничения гибкости процесса возникают из-за необходимости производить специальные катушки индуктивности для многих приложений. Это довольно дорого и требует распределения больших плотностей тока в небольших медных катушках индуктивности, что может потребовать специальной инженерии и «медной арматуры».

Обработка пластика

Индукционный нагрев используется в пластике термопластавтоматы. Индукционный нагрев повышает энергоэффективность процессов литья под давлением и экструзии. Тепло генерируется непосредственно в корпусе машины, что сокращает время прогрева и потребление энергии. Индукционная катушка может быть размещена вне теплоизоляции, поэтому она работает при низких температурах и имеет долгий срок службы. Используемая частота колеблется от 30 кГц до 5 кГц, уменьшаясь для более толстых стволов. Снижение стоимости инверторного оборудования сделало индукционный нагрев все более популярным. Индукционный нагрев также может применяться к формам, обеспечивая более равномерную температуру формы и улучшенное качество продукции. [3]

Пиролиз

Индукционный нагрев используется для получения biochar при пиролизе биомассы. Тепло непосредственно выделяется в стенках шейкерного реактора, что обеспечивает пиролиз биомассы с хорошим перемешиванием и контролем температуры. [4]

подробности

Базовая установка — это источник питания переменного тока, обеспечивающий электричество с низким Напряжение но очень большой ток и высокая частота. Заготовка для нагрева помещается в воздушная катушка управляемый источником питания, обычно в сочетании с резонансным бак конденсатор для увеличения реактивной мощности. Переменное магнитное поле вызывает в заготовке вихревые токи.

Относительная глубина зависит от температуры, поскольку удельное сопротивление и проницаемость зависят от температуры. Для стали относительная проницаемость падает до 1 выше Температура Кюри. Таким образом, эталонная глубина может изменяться в зависимости от температуры в 2–3 раза для немагнитных проводников и в 20 раз для магнитных сталей. [7]

Применение частотных диапазонов

Частота (кГц)Тип заготовки
5–30Толстые материалы (например, сталь при 815 ° C диаметром 50 мм и более).
100–400Небольшие заготовки или неглубокое проплавление (например, сталь при 815 ° C диаметром 5–10 мм или сталь при 25 ° C диаметром около 0,1 мм).
480Микроскопические детали

Магнитные материалы улучшают процесс индукционного нагрева благодаря гистерезис. Материалы с высоким проницаемость (100–500) легче нагреть с помощью индукционного нагрева. Нагрев гистерезиса происходит ниже температуры Кюри, когда материалы сохраняют свои магнитные свойства. Полезна высокая проницаемость детали ниже температуры Кюри. Разница температур, масса и удельная теплоемкость влияют на нагрев детали.

На передачу энергии при индукционном нагреве влияет расстояние между катушкой и заготовкой. Потери энергии происходят из-за теплопроводности от заготовки к приспособлению, естественная конвекция, и тепловое излучение.

Индукционная катушка обычно изготавливается из медных трубок и жидкий хладагент. Диаметр, форма и количество витков влияют на эффективность и структуру поля.

Печь стержневого типа

Печь состоит из круглого пода, в котором находится плавящаяся шихта в виде кольца. Металлическое кольцо имеет большой диаметр и магнитно связано с электрической обмоткой, питаемой от источника переменного тока. По сути, это трансформатор, в котором подлежащий нагреву заряд образует однооборотную вторичную обмотку короткого замыкания и магнитно связан с первичной обмоткой железным сердечником.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector