Azotirovanie.ru

Инженерные системы и решения
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Количество теплоты: формула, расчет

Количество теплоты: формула, расчет

Внутреннюю энергию термодинамической системы можно изменить двумя способами:

  1. совершая над системой работу,
  2. при помощи теплового взаимодействия.

Передача тепла телу не связана с совершением над телом макроскопической работы. В данном случае изменение внутренней энергии вызвано тем, что отдельные молекулы тела с большей температурой совершают работу над некоторыми молекулами тела, которое имеет меньшую температуру. В этом случае тепловое взаимодействие реализуется за счет теплопроводности. Передача энергии также возможна при помощи излучения. Система микроскопических процессов (относящихся не ко всему телу, а к отдельным молекулам) называется теплопередачей. Количество энергии, которое передается от одного тела к другому в результате теплопередачи, определяется количеством теплоты, которое предано от одного тела другому.

называют энергию, которая получается (или отдается) телом в процессе теплообмена с окружающими телами (средой). Обозначается теплота, обычно буквой Q.

Это одна из основных величин в термодинамике. Теплота включена в математические выражения первого и второго начал термодинамики. Говорят, что теплота – это энергия в форме молекулярного движения.

Теплота может сообщаться системе (телу), а может забираться от нее. Считают, что если тепло сообщается системе, то оно положительно.

Из курса лекций

При протекании тока через проводник, обладающий сопротивлением, проводник нагревается (если он неподвижен и в нём нет химических превращений, то работа тока расходуется на нагревание проводника). Определим количество теплоты, выделяющегося в единицу времени на участке цепи. Рассмотрим однородный и неоднородный участки цепи, будем использовать закон Ома и закон сохранения энергии.

Будет интересно➡ Законы Кирхгофа простыми словами: определение для электрической цепи

Однородный участок цепи

Рассчитаем работу, которую совершают силы поля над носителями тока на участке 1–2 за время dt. Сила тока в проводнике I, разность потенциалов между точками 1 и 2 – (j1 – j2). Тогда: – такой заряд протечёт через поперечное сечение участка 1-2.

работа, совершаемая при перенесении заряда dq через поперечное сечение проводника на участке 1–2, силами поля.

Согласно закону сохранения энергии, энергия, эквивалентная этой работе, выделяется в виде тепла, если проводник неподвижен и в нём не происходят химические превращения, т.е. проводник нагревается. Носители тока (в металлах электроны) в результате работы сил поля приобретают дополнительную кинетическую энергию, а затем расходуют её на возбуждение колебаний решётки при столкновении с её узлами-атомами. Тогда:

Т.к. , проинтегрировав, получаем:

Эта формула выражает закон Джоуля-Ленца для однородного участка цепи в интегральной форме записи. Если сила тока изменяется со временем, то количество теплоты, выделяющееся за время t вычисляется по формуле:

Получим дифференциальную форму записи закона Джоуля-Ленца.

; ; – величина элементарного объема.

Формула(24.6) определяет тепло, выделяющееся во всём проводнике, можно перейти к выражению, характеризующему выделение тепла в различных местах проводника. Выделим в проводнике элементарный объём в виде цилиндра. Согласно закону Джоуля-Ленца за время dt в этом объеме выделяется тепло.

Разделив это выражение на dV и dt, найдём количество тепла, выделяющееся в единице объема в единицу времени, эту величину назвали удельной тепловой мощностью тока w.

Удельная тепловая мощность тока – это количество теплоты выделяющееся в единицу времени в единице объема проводящей среды.

Формула (24.9) – дифференциальная форма записи закона Джоуля-Ленца. Сформулируем его:

Удельная тепловая мощность тока пропорциональна квадрату плотности электрического тока и удельному сопротивлению среды в данной точке.

Уравнение применимо к любым проводникам вне зависимости от их формы, однородности и от природы сил, возбуждающих электрический ток. Если на носители тока действуют только электрические силы, то, согласно закону Ома:

Это уравнение имеет менее общий характер, чем уравнение

Формула расчета теплоты при изменении температуры

Элементарное количество теплоты обозначим как $delta Q$. Обратим внимание, что элемент тепла, которое получает (отдает) система при малом изменении ее состояния не является полным дифференциалом. Причина этого состоит в том, что теплота является функцией процесса изменения состояния системы.

Элементарное количество тепла, которое сообщается системе, и температура при этом меняется от Tдо T+dT, равно:

где C – теплоемкость тела. Если рассматриваемое тело однородно, то формулу (1) для количества теплоты можно представить как:

$$delta Q=c m d T=nu c_ d T(2)$$

где $c=frac$ – удельная теплоемкость тела, m – масса тела, $c_=c cdot mu$ — молярная теплоемкость, $mu$ – молярная масса вещества, $nu=frac$ – число молей вещества.

Если тело однородно, а теплоемкость считают независимой от температуры, то количество теплоты ($Delta Q$), которое получает тело при увеличении его температуры на величину $Delta t = t_2 — t_1$ можно вычислить как:

$$Delta Q=c m Delta t(3)$$

Читайте так же:
Как соединить провод теплого пола с кабелем

где t2, t1 температуры тела до нагрева и после. Обратите внимание, что температуры при нахождении разности ($Delta t$) в расчетах можно подставлять как в градусах Цельсия, так и в кельвинах.

Немного истории

Многочисленные опыты, проведенные в конце XVIII – начале XIX века, позволили не только установить основные свойства и законы электричества, но и сформулировать эпохальный по своей значимости вывод об эквивалентности между теплотой и механической работой: работа, или, как впоследствии стали формулировать, «энергия», никогда не теряется, а лишь переходит из одного вида в другой. Этот вывод, получивший впоследствии название закона сохранения и превращения энергии (см. подраздел 1.2), и заключался в том, что теплоту можно обратить в механическую работу и наоборот и что из определенного количества теплоты можно получить только определенное количество механической работы. Можно привести тысячи примеров, когда с помощью этого закона нашли свое объективное толкование результаты опытов в различных областях естествознания.


Закон Джоуля Ленца кратко

Основными положениями закона сохранения энергии воспользовались и электротехники при определении, например, количества тепловой энергии, выделяющегося в гальванической батарее вследствие химической реакции и превращающегося впоследствии в электрическую энергию. Однако особенность электрической энергии состоит в том, что само по себе электричество неприменимо. Человечество не может использовать его непосредственно подобно тому, как оно согревается теплотой, видит благодаря свету и т.п. Можно пользоваться только действием электрического тока, при котором электричество переходит в другие формы энергии.

Одним из первых глубоко исследовал свойства электрического тока в 1801–1802 годах петербургский академик В.В. Петров (1761– 1834), который провел множество экспериментов по изучению неизвестных в то время законов электрического тока. Изучив работы своих предшественников, Петров пришел к выводу, что более полное и всестороннее исследование электрического тока возможно лишь с помощью крупных гальванических батарей, действие которых будет более интенсивным и легче наблюдаемым. Для своих опытов Петров построил самую крупную в мире в те годы батарею из 4200 медных и цинковых кружков, уложенных в четырех деревянных ящиках, и получил от нее электродвижущую силу около 1700 вольт. Благодаря «лежачей» конструкции тяжелые металлические кружки не выдавливали жидкости, которой пропитывались бумажные кружки, разделяющие цинковые и медные элементы. Для изоляции он покрыл внутренние стенки ящиков сургучным лаком. Общая длина батареи составила 12 м. Все это позволило ему построить «огромную наипаче» батарею, которой не знал ещё мир. Уже в 1801 году он нашел зависимость силы тока от поперечного сечения проводника, в то время как немецкий физик Ом, работавший над этими проблемами, опубликовал результаты своих опытов только в 1827 году. Очень скоро им было замечено, что при прохождении электрического тока по проводнику последний нагревается.

В своих работах В.В. Петров описывает опыты по электролизу растительных масел, в результате которых он обнаружил высокие электроизоляционные свойства этих масел. Позднее масла получили широкое применение в качестве электроизоляционного материала. Желая продемонстрировать явление электролиза одновременно в нескольких трубках с водой, Петров впервые применил параллельное соединение приемников электрического тока. Работы этого выдающегося ученого установили возможность практического использования электрического тока для нагревания проводников.

Эмилий Христианович Ленц (1804–1865) – известный российский физик и электротехник, академик Петербургской академии наук, ректор Петербургского университета – родился в Дерпте (ныне Тарту, Эстония) в семье чиновника. После второго курса Дерптского университета отправился в 1823 году в трехлетнее кругосветное плавание. С помощью сконструированных им приборов (глубометра и батометра) занимался физическими исследованиями в водах Берингова пролива, Тихого и Индийского океанов, установил происхождение теплых и холодных морских течений, открыл закон океанических циркуляций. В 1829 г. принял участие в экспедиции на Кавказ, где проводил магнитные, термометрические и барометрические измерения в горных районах Кавказа и на побережье Каспийского моря. В 1830 году был назначен экстраординарным профессором и директором физического кабинета при Петербургской АН, в 1836 г. возглавил кафедру физики в Петербургском университете, а в 1863 г. стал ректором этого университета. Основные его работы посвящены электромагнетизму, вопросам теории и практического применения электричества, исследования в области которого Ленц начал в 1831 году в лаборатории первого русского электротехника – академика В.В. Петрова. Ленц стоял у истоков первой в России школы физиков-электротехников, последователями которой стали А.С. Попов, Ф.Ф. Петрушевский, В.Ф. Миткевич и др.

Зависимость количества выделяемой теплоты от силы тока изучали английский физик Джеймс Джоуль и русский физик Эмилий Ленц. Они пропускали ток по спирали, помещенной в калориметр с водой. Через некоторое время вода нагревалась. По её температуре легко было вычислить количество выделившейся теплоты. Из проведенных опытов практически одновременно Джоуль и Ленц пришли к выводу, что при прохождении гальванического тока I по проводнику, обладающему определенным сопротивлением R, в течение времени t совершается работа А :

Читайте так же:
По какому закону определяется тепловое действие тока

Будет интересно➡ Что такое элемент Пельтье и как его сделать своими руками?

проявляющаяся в виде выделившейся теплоты.

Этот важнейший вывод обратимости электрической и тепловой энергии, теоретически обоснованный Уильямом Томсоном, получил название закона Джоуля–Ленца, а именем Джоуля названа единица механической работы в системе СИ.

Комбинируя проводники различного сопротивления, включенные последовательно в общую цепь, можно добиться концентрированного выделения большого количества теплоты на малом участке проводника с большим сопротивлением. На таком концентрировании выделения теплоты были основаны все первоначальные опыты превращения энергии электрического тока в тепловую и даже в световую энергию.


Суть данного закона

Всю свою жизнь В.В. Петров – член двух академий – прожил скромно и незаметно. 41 год он проработал в Медико-хирургической академии. За это время он провел много физических опытов, написал три книги и учебник по физике, которым пользовались в гимназиях всей России. Книги и научные статьи Петров писал на русском языке, чтобы их читало как можно больше людей, хотя в то время научные работы было принято писать на латыни. Он писал: «Я надеюсь, что просвещенные и беспристрастные физики по крайней мере некогда согласятся отдать трудам моим ту справедливость, которую важность сих последних опытов заслуживает».

Формула количества теплоты при фазовых переходах

Переход от одной фазы вещества в другую сопровождается поглощением или выделением некоторого количества теплоты, которая носит название теплоты фазового перехода.

Так, для перевода элемента вещества из состояния твердого тела в жидкость ему следует сообщить количество теплоты ($delta Q$) равное:

$$delta Q=lambda d m$$

где $lambda$ – удельная теплота плавления, dm – элемент массы тела. При этом следует учесть, что тело должно иметь температуру, равную температуре плавления рассматриваемого вещества. При кристаллизации происходит выделение тепла равного (4).

Количество теплоты (теплота испарения), которое необходимо для перевода жидкости в пар можно найти как:

где r – удельная теплота испарения. При конденсации пара теплота выделяется. Теплота испарения равна теплоте конденсации одинаковых масс вещества.

Расчет расходов на нагрев воды

Этот калькулятор высчитает сколько денег, электроэнергии и времени тратится на нагрев воды. Вам не потребуется ни формул, ни коэффициентов: просто введите ваши данные и получите ответ.

Для расчета потребленной электроэнергии надо указать температуру холодной и горячей воды, а также её объём (массу). Вы можете указать КПД нагревательного прибора, если он вам известен. Если задать КПД 100%, то расчет покажет только полезную мощность затраченную на нагрев воды. При указании реального КПД расчет выдаст полную мощность, потребленную от сети.

Чтобы высчитать полную стоимость нагрева воды, необходимо задать ваш тариф на электроэнергию в рублях.

Чтобы оценить сколько времени занимает нагрев, укажите мощность электроприбора, которым вы греете воду, в киловаттах (кВт). Мощность часто указана на корпусе прибора, а также в его руководстве по эксплуатации или паспорте.

Примеры

Кипячение воды в электрочайнике

Обычно я наливаю в чайник воду комнатной температуры 20°C до отметки 1 литр и всегда довожу до кипения (до 100 градусов). Мощность чайника 2 кВт. Простейший расчет показывает, что на кипячение потратится примерно 0,1 кВт ч (киловатт часов) электроэнергии, 3 минуты времени, и, по московским тарифам, пятьдесят копеек денег.

Значит, каждое чаепитие прибавляет пол рубля в счет за электроэнергию, но это значительно меньше цены порции чая или кофе.

Подогрев воды в накопительном водонагревателе

Принимая душ, я каждый раз полностью опустошаю всю горячую воду из накопительного нагревателя, потому как в конце вода становится холодной. Зимой нагреватель греет холодную водопроводную воду от 5 до 45 градусов. Объем бачка 80 литров. При мощности тэнов 2 кВт, свежая вода в бачке будет нагреваться 2 часа, при этом потратится примерно 4 кВт электроэнергии и 20 рублей денег на её оплату. Летом вода греется от 18 до 45.

Значит, зимой каждое принятие душа обходится семейной казне в 20 рублей, а летом — в 15 рублей, если не считать стоимость холодной воды.

Замечание о кпд нагрева воды

Существует распространенное ошибочное мнение о том, что водяные электронагреватели имеют кпд равный 100%. Это вызвано тем, что в теоретических расчётах потерями энергии нередко пренебрегают из-за их малой величины. Но когда расчёты имеют практическое применение, то нетрудно заметить, что в действительности потери энергии при нагреве воды происходят уже с первых секунд. В зависимости от нагревательного прибора это могут быть следующие основные виды потерь:

  • на разогрев самого нагревательного элемента (особенно много для электроплиты),
  • на нагрев стенок ёмкости (чайника, бака),
  • теплопередача и тепловое излучение энергии в окружающую среду от стенок ёмкости и непогружного нагревательного элемента),
  • испарение с поверхности воды в открытых емкостях (кастрюлях и чайниках без крышки),
  • потери на парообразование при кипении (самый мощный канал потерь).
Читайте так же:
Теплолюкс провод для теплого пола

Исходя из направлений основных потерь, нетрудно определить мероприятия по повышению кпд процесса нагрева воды:

  • использование погружного нагревательного элемента,
  • использование закрытой ёмкости,
  • теплоизоляция ёмкости,
  • использование минимально необходимой температуры нагрева,
  • отключение при возникновении кипения.

В качестве дополнительных потерь можно отметить:

  • потери в электрических проводах и контактах (разогрев проводов и штепсельной вилки электроприбора).
  • потери на побочных электрохимических процессах (ионные нагреватели, электрохимическое разложение воды, электрохимическое растворение анода),
  • потери на звук (шум, издаваемый пузырьками пара в месте контакта нагревателя или горячей поверхности с водой).

С точки зрения только потерь энергии дополнительные потери являются мизерными и несущественными, однако с точки зрения незапланированных расходов и рисков эти потери требуют особого внимания:

  • Разогрев проводов электропитания в лучшем случае приводит к временной поломке проводов/розетки/вилки, в худшем — к пожару, поражению электрическим током, ожогу.
  • Электрохимические процессы насыщают воду ионами металлов, разъедают бак и погружной нагревательный элемент. Первое делает воду непригодной для питья, второе сокращает срок службы водонагревателя и может вызвать потоп, если бак проржавеет насквозь.
  • Шум при нагреве воды является индикатором того, что на поверхности контакта воды с горячим металлом происходит парообразование. Этот процесс приводит к образованию накипи. Из-за того, что накипь плохо проводит тепло, нагревательный элемент начинает перегреваться, приходя в негодность ускоренными темпами (также немного увеличивается время нагрева). Поломка нагревательного элемента может привести к поражению людей электрическим током). Также, шум сам по себе может мешать окружающим, вызывая шумовое загрязнение.

Исходя из направлений дополнительных потерь, выделяются мероприятия по избеганию и снижению их негативных последствий:

Тепловая мощность дуги

Энергия мощных потоков заряженных частиц, бомбар­дирующих катод и анод, превращается в тепловую энергию электрической дуги. Суммарное количество теплоты Q (Дж), выделяемое дугой на катоде, аноде и столбе дуги, опреде­ляется по формуле Q = lUt, где I — сварочный ток, А; U — напряжение дуги, В; г — время горения дуги, с.

При питании дуги постоянным током наибольшее ко­личество теплоты выделяется в зоне анода (42—43%). Это объясняется тем, что анод подвергается более мощной бом­бардировке заряженными частицами, чем катод, а при стол­кновении частиц в столбе дуги выделяется меньшая доля общего количества теплоты.

При сварке угольным электродом температура в катод­ной зоне достигает 3200°С, в анодной — 3900°С, а в столбе дуги среднее значение температуры составляет 6000°С. При сварке металлическим электродом температура катодной зоны составляет около 2400°С, а анодной — 2600°С.

Разная температура катодной и анодной зон, а также и разное количество теплоты, выделяющееся в этих зонах, используются при решении технологических задач. При сварке деталей, требующих большого подвода теплоты для прогрева кромок, применяют прямую полярность, при ко­торой анод (плюсовая клемма Источника тока) подсоединя­ют к детали, а катод (минусовая клемма источника тока) — к электроду. При сварке тонкостенных изделий, тонколис­товых конструкций, а также сталей, не допускающих пере­грева (нержавеющие, жаропрочные, высокоуглеродистые

и др.), применяют сварку постоянным током обратной по­лярности. В этом случае катод подсоединяют к сваривае­мой детали, а анод — к электроду. При этом не только обес­печивается относительно меньший нагрев свариваемой де­тали, но и ускоряется процесс расплавления электродного материала за счет более высокой температуры анодной зоны и большего подвода теплоты. Полярность клемм источни­ка постоянного тока может быть определена с помощью раствора поваренной соли (половина чайной ложки соли на стакан воды). Если в такой раствор опустить провода от клемм источника тока, то у отрицательного провода будет происходить бурное выделение пузырьков водорода.

При питании дуги переменным током различие темпе­ратур катодной и анодной зон и распределение теплоты сгла­живаются вследствие периодической смены катодного и анодного пятен с частотой, равной частоте тока:

Практика показывает, что в среднем при ручной сварке только 60—70% теплоты дуги используется на нагревание и плавление металла. Остальная часть теплоты рассеива­ется в окружающую среду через излучение и конвекцию.

Количество теплоты, используемое на нагрев и плавку свариваемого металла в единицу времени, называется эф­фективной тепловой мощностью дуги q. Она равна полной тепловой мощности дуги, умноженной на эффективный коэффициент полезного действия нагрева металла дугой г|:

где I — величина сварочного тока, А;

Читайте так же:
Количество теплоты выделяемое проводником с током тем больше

Uд — напряжение дуги, В.

Коэффициент полезного действия зависит от способа свар­ки, материала электрода, состава электродного покрытия и других факторов. При ручной дуговой сварке электродом с тонким покрытием или угольным электродом он составляет 0,5—0,6; а при качественных электродах — 0,7—0,85. При аргонодуговой сварке потери теплоты значительны и состав­ляют 0,5—0,6. Наиболее полно используется теплота при свар­ке под флюсом.

Для характеристики теплового режима процесса сварки принято определять погонную энергию дуги, т. е. количе­ство теплоты, вводимое в металл на единицу длины одно­проходного шва, измеряемое в Дж/м. Погонная энергия равна отношению эффективной тепловой мощности к ско­рости сварки

q_ _ 0,24 • / • £/4 • rj V = V ’

где V — скорость сварки, см/с.

Величина погонной энергии необходима для определе­ния рационального режима легированных термообрабаты­ваемых сталей.

Потери теплоты при ручной дуговой сварке составляют примерно 25%, из которых 20% уходят в окружающую среду дуги через излучение и конвекцию паров и газов, а осталь­ные 5% — на угар и разбрызгивание свариваемого метал­ла. Потери теплоты при автоматической сварке под флю­сом составляют только 17%, из которых 16% расходуются на плавление флюса, а на угар и разбрызгивание затрачи­вается около 1% теплоты.

РАСЧЕТ ТЕПЛОВОЙ МОЩНОСТИ ДЛЯ ВЫБОРА НАГРЕВАТЕЛЯ

25777_164052.jpg

К — Коэффициент тепловых потерь (зависит от типа конструкции и изоляции помещения):

Без теплоизоляции ( К=3,0-4,0 ) — Деревянная конструкция или конструкция из гофрированного металлического листа.

Простая теплоизоляция ( К=2,0-2,9 ) — Здание с одинарной кирпичной кладкой, упрощенная конструкция окон и крыши.

Средняя теплоизоляция ( К=1,0-1,9 ) — Стандартная конструкция. Двойная кирпичная кладка, крыша со стандартной кровлей, небольшое кол-во окон.

Высокая теплоизоляция ( К=0,6-0,9 ) — Кирпичные стены с двойной теплоизоляцией, небольшое кол-во окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала.

Пример:

Объем помещения: 5 х 16 х 2,5 = 200

∆Т: Температура наружного воздуха -20 °С. Требуемая температура внутри помещения +25 °С. Разница между тем­пературами внутри и снаружи +45 °С.

К: Рассмотрим вариант со средней теплоизоляцией (1-1,9). Выберите то значение, которое на ваш взгляд, наиболее соответствует вашему помещению. Чем хуже теплоизоляция, тем больший коэффициент нужно выбирать. Например 1,7.

60660-shema-teplovaya-pushka-elektricheskaya.jpg

Расчет: 200 х 45 х 1,7 = 15 300 ккалч

1 кВт = 860 ккалч, соответственно 15 300860 = 17,8 кВт.

tablica-dizelnih-pushek-master.jpg

Газовые и дизельные калориферы прямого нагрева, можно использовать только в хорошо проветриваемых помещениях, или на открытых пространствах. Дизельные калориферы непрямого нагрева, можно использовать в закрытых помещениях, при условии отвода сгораемых газов за пределы помещения.

Таблица Мощности для помещений:

Расчет мощности можно сделать с помощью данной схемы (ВЫ можете скачать и распечать схему ниже)

Formula-raschyota-moshhnosti.png

Расчёт мощности тепловой пушки, нагревателя воздуха

Для определения необходимой мощности тепловой пушки или нагревателя воздуха нужно рассчитать минимальную нагревательную мощность для обогрева данного помещения по следующей формуле:

V х ΔT x k = ккал/ч , где:

  • V — объем обогреваемого помещения (длина, ширина, высота), м3;
  • ΔT — разница между температурой воздуха вне помещения и требуемой температурой воздуха внутри помещения, °C;
  • k — коэффициент рассеивания (теплоизоляции здания):
    k = 3,0-4,0 — без теплоизоляции (упрощённая деревянная конструкция или конструкция из гофрированного металлического листа);
    k = 2,0-2,9 — небольшая теплоизоляция (упрощённая конструкция здания, одинарная кирпичная кладка, упрощённая конструкция окон);
    k = 1,0-1,9 — средняя теплоизоляция (стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей);
    k = 0,6-0,9 — высокая теплоизоляция (улучшенная конструкция здания, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала).

0b038906a8a843557c20c9f7e0fc1c61.png

Пример:

Объем помещения для обогрева (ширина 4 м, длина 12 м, высота 3 м): V = 4 x 12 x 3 = 144 м3.
Наружная температура -5°C. Требуемая температура внутри +18°C. Разница температур ΔT = 18°C — (-5 C) = 23°C.
k = 4 (здание с низкой изоляцией).

Расчет мощности:
144 м3 x 23°C x 4 = 13 248 ккал/ч — нужная минимальная мощность.

Принимается:
1 кВт = 860 ккал/ч;
1 ккал = 3,97 ВТЕ;
1 кВт = 3412 ВТЕ;
1 БТЕ = 0,252 ккал/ч.

Итого: 13 248 ккал/ч / 860 = 15,4 кВт — нужная минимальная мощность в кВт.

Тепловая мощность и суммарные потери теплоэнергии

author

Для создания комфорта в жилых и производственных помещениях выполняют составление теплового баланса и определяют коэффициент полезного действия (КПД) отопителей. Во всех расчётах применяется энергетическая характеристика, позволяющая связывать нагрузки источников обогрева с расходными показателями потребителей — тепловая мощность. Вычисление физической величины производится по формулам.

тепло

Для вычисления тепловой мощности используются специальные формулы

Эффективность нагревателей

Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.

Читайте так же:
Выключатели для теплого электрического пола

Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:

  1. Q — количество теплоты в джоулях;
  2. Δ t — интервал времени выделения энергии в секундах;
  3. размерность полученной величины Дж / с = Вт.

В этом видео вы узнаете, как рассчитать количество теплоты:

Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.

Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ – коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.

Из формулы понятно, что для повышения мощности надо увеличить количество радиаторов отопления и площадь теплоотдачи. Уменьшив же поверхность контакта с внешней средой, минимизируют потери температуры в помещении. Чем массивнее стена здания, тем меньше будет утечка тепла.

Баланс отопления помещений

Подготовка проекта любого объекта начинается с теплотехнического расчёта, призванного решить задачу обеспечения сооружения отоплением с учётом потерь из каждого помещения. Сведение баланса помогает узнать, какая часть тепла сохраняется в стенах здания, сколько уходит наружу, объём потребной выработки энергии для обеспечения комфортного климата в комнатах.

Определение тепловой мощности необходимо для решения следующих вопросов:

  1. высчитать нагрузку отопительного котла, которая обеспечит обогрев, горячее водоснабжение, кондиционирование воздуха и функционирование системы проветривания;
  2. согласовать газификацию здания и получить технические условия на подключение к распределительной сети. Для этого потребуются объёмы годового расхода горючего и потребность в мощности (Гкал/час) тепловых источников;
  3. выбрать оборудование, необходимое для отопления помещений.

Из закона сохранения энергии следует, что в ограниченном пространстве с постоянным температурным режимом должен соблюдаться тепловой баланс: Q поступлений — Q потерь = 0 или Q избыточное = 0, или Σ Q = 0. Постоянный микроклимат поддерживается на одном уровне в течение отопительного периода в зданиях социально значимых объектов: жилых, детских и лечебных учреждениях, а также на производствах с непрерывным режимом работы. Если потери тепла превышают поступление, требуется отапливать помещения.

Технический расчёт помогает оптимизировать расход материалов при строительстве, снизить затраты на возведение зданий. Определяется суммарная тепловая мощность котла сложением энергии на отопление квартир, нагрев горячей воды, компенсацию потерь вентиляции и кондиционирования, резерв на пиковые холода.

Расчет тепловой мощности

Выполнить точные вычисления по системе отопления затруднительно для неспециалиста, но упрощённые способы позволяют рассчитать показатели неподготовленному человеку. Если производить расчеты «на глаз», может получиться, что мощности котла или нагревателя не хватает. Или, наоборот, из-за избытка вырабатываемой энергии придётся пускать тепло «на ветер».

Способы самостоятельной оценки характеристик отопления:

  1. Использование норматива из проектной документации. Для Московской области применяется величина 100-150 Ватт на 1 м². Площадь, подлежащая обогреву, умножается на ставку — это и будет искомый параметр.
  2. Применение формулы расчета тепловой мощности: N = V × Δ T × K, ккал/час. Обозначения символов: V — объём комнаты, Δ T — разница температур внутри и снаружи помещения, K — коэффициент пропускания тепла или рассеивания.
  3. Опора на укрупнённые показатели. Метод похож на предыдущий способ, но используется для определения тепловой нагрузки многоквартирных зданий.

Значения коэффициента рассеивания берут из таблиц, пределы изменения характеристики от 0,6 до 4. Примерные величины для упрощённого расчёта:

Материал стенК-т пропускания тепла
Неутепленный металлопрофиль3―4
Доска 50 мм2,5―3,5
Кладка в 1 кирпич с минимальной изоляцией2―3
Стандартное перекрытие, двери и окна, перегородка в 2 блока1―2
Стеклопакеты, керамитовый контур с теплоизолом0,6―0,9

Пример расчета тепловой мощности котла для помещения 80 м² с потолком 2,5 м. Объём 80 × 2,5 = 200 м³. Коэффициент рассеивания для дома типовой постройки 1,5. Разница между комнатной (22°С) и наружной (минус 40°С) температурами составляет 62°С. Применяем формулу: N = 200 × 62 × 1,5 = 18600 ккал/час. Перевод в киловатты осуществляется делением на 860. Результат = 21,6 кВт.

Полученную величину мощности повышают на 10%, если существует вероятность морозов ниже 40°С / 21,6 × 1,1 = 23,8. Для дальнейших вычислений результат округляется до 24 кВт.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector