Azotirovanie.ru

Инженерные системы и решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя

Виды и конструкции тепловых реле, расчет и выбор теплового реле для защиты двигателя

Тепловое реле выполняет функцию защиты от затяжных перегрузок, их работа похожа на работу теплового разъединителя в автоматических выключателей. В зависимости от величины перегрузки (отклонению от номинального режима – I/Iн) оно срабатывает через соответствующий промежуток времени, который можно вычислить по время-токовой характеристике теплового реле. Давайте подробно рассмотрим, что такое тепловое реле и как его правильно выбрать.

Тепловое реле

Назначение и принцип работы

При перегрузке электродвигателей повышается потребляемый ток, соответственно увеличивается его нагрев. Если двигатель перегревается – нарушается целостность изоляции обмоток, быстрее изнашиваются подшипники, они могут заклинить. При этом тепловой расцепитель автомата может и не защитить оборудование. Для этого нужно тепловое реле.

Перегрузки могут возникать из-за перекоса фаз, затрудненного движения ротора, вследствие как повышенной механической нагрузки, так и проблем с подшипниками, при полном заклинивании вала двигателя и исполнительных механизмах.

Тепловое реле реагирует на возросший ток, и в зависимости от его величины разорвет цепь питания через какое-то время, тем самым сохранив обмотки двигателя целыми. После последующего устранения неисправности, при условии исправности статора, двигатель может продолжить работу.

Если реле сработало по неизвестным причинам, и осмотр показал, что всё в порядке, вы можете вернуть контакты реле в исходное состояние, для этого на нем есть кнопка.

Реле может сработать и в случае затяжного пуска электродвигателя. При этом в обмотках протекают повышенные значения токов. Затяжной пуск – процесс, когда двигатель долго выходит на номинальные обороты. Может произойти из-за перегрузки на валу, либо из-за низкого напряжения в питающей сети.

Время, через которое сработает реле, определяется по время-токовой характеристики конкретного реле, в общем виде она выглядит так:

Время-токовая характеристика теплового реле

По вертикальной оси расположено время в секундах, через которое контакты разорвут цепь, а по горизонтальной – во сколько раз фактический ток превышает номинальный. Здесь мы видим, что при номинальном токе реле время работы реле стремится к бесконечности, при перегрузке уже в 1.2 раза оно разомкнется примерно за 5000 секунд, при перегрузке по току в 2 раза – за 500 секунд, при перегрузке в 5-8 раз реле сработает за 10 секунд.

Такая защита исключает постоянные отключения двигателя при кратковременных перегрузках и рывках, но спасают оборудование при длительном выходе за пределы допустимых режимов.

Тепловое реле Schneider Electric

Принцип работы

В реле есть пара биметаллических пластин с разным температурным коэффициентом расширения. Пластины жестко соединены друг с другом, если их нагреть, то конструкция изогнется в сторону участка с меньшим температурным коэффициентом расширения.

Устройство теплового реле

Греются пластины за счет протекания тока нагрузки или от нагревателя, через который проходит ток нагрузки, на схеме изображено в виде нескольких витков вокруг биметалла. Протекающий ток нагревает пластину до определенного предела. Чем выше ток, тем быстрее нагрев.

Стоит учитывать, что если реле находится в жарком помещении – нужно выставлять ток срабатывания с большим запасом, ведь происходит дополнительный нагрев от окружающей среды. К тому же, если реле только что сработало – контактам нужно некоторое время, чтобы остыть. Иначе может произойти повторное ложное срабатывание.

Устройство реле ТРН

Давайте рассмотрим конкретный пример. Выше вы видите устройство реле ТРН. Оно является двухфазным. Состоит из трёх ячеек, в крайних нагревательные элементы, посередине температурный компенсатор, регулятор тока срабатывания, расцепитель, размыкающий контакт, рычаг возврата.

Когда ток протекает через нагревательный элемент (1), его температура растёт, когда ток достигает установленного тока перегрузки биметаллическая пластина(2) деформируется. Толкатель (10) перемещается вправо и толкает пластину температурного компенсатора (3). Когда ток перегрузки достигнут, она выгибается вправо и выводит из зацепления защелку (7). Штанга расцепителя (6) поднимается вверх и контакты (8) размыкаются.

Виды тепловых реле

Тепловые реле могут подключаться на все три фазы или на две из трёх, в зависимости от конструкции. Большинство реле конструктивно разработаны для соответствия определенным магнитным пускателям, это нужно для удобства и аккуратности монтажа. Рассмотрим некоторые из них.

РТЛ – подходит для использования с пускателями типа ПМЛ. С набором клемм КРЛ используется как самостоятельный прибор защиты.

Реле РТЛ

РТТ – подходит для монтажа с пускателями ПМЕ и ПМА. Также может использоваться как самостоятельное, если его смонтировать на специальную панель.

Реле РТТ

РТИ – тепловые реле для пускателей КМИ и КМТ. На лицевой вы можете видеть пару дополнительных блок-контактов, для реализации схем индикации и прочего.

Реле РТИ

ТРН – двухфазное тепловое реле. Устанавливается в трёхфазных двигателях, при этом подключается в разрыв двух фаз. Температура окружающей среды не влияет на его работу. На регуляторе тока есть 10 делений 5 на уменьшение, 5 на увеличение, цена одного деления – 5%.

Реле ТРН

На самом деле тепловых реле существует великое множество, но все они выполняют одну функцию.

Реле очень часто монтируют в специальный железный ящик. На фото пускатель ПМА 4-й величина на 63 Ампера, с трёхфазным тепловым реле.

Магнитный пускатель с тепловым реле

К современным пускателям тепловое реле подключается так как изображено на фото ниже, получается цельная конструкция.

Подключение теплвого реле к магнитному пускателю

Красная кнопка «test» нужна для пробного отключения реле, и проверки возможности размыкания контактов.

Такой способ подключения позволяет экономить место на дин рейке.

Пускатель с тепловым реле на DIN-рейке

Схема подключения

Как уже было сказано, тепловое реле защищает от долговременной перегрузки электрооборудование. Оно монтируется между источником питания и потребителем.

Схема подключения теплового реле

Контроллируемый ток протекает через нагревательные элементы (1), они выгибаясь размыкают контакты (2) теплового реле, в этой схеме использовано 2-хфазное тепловое реле. Его контакты размыкают цепь катушки контактора или магнитного пускателя, также как если бы вы нажали кнопку «СТОП». В собранном виде эта схема выглядит так:

ТРН10

На первом плане видно как от выходящих контактов пускателя подключены две крайние фазы. На заднем плане видно, что к катушке реле подключена клемма от контактов ТРН.

Если у вас используется реверсная схема магнитных пускателей, то подключение практически аналогичное, ниже это наглядно изображено. Контакты с маркировкой «10» и «12» подключаются в разрыв катушек пускателей КМ1 и КМ2.

Монтажная схема

Здесь видно что есть нормально-замкнутая пара и нормально-разомкнутый контакт. Это нужно, например, для индикации срабатывания тепловой защиты, т.е. к нему можно подключить лампочку-индикатор или подать сигнал на диспетчерский пульт или АСУ.

Тепловое реле РТИ

На реле РТИ эти контакты размещены на передней панели:

NO – нормально-открытый – на индикацию;

NC – нормально-закрытый – на пускатель.

Кнопка STOP принудительно переключает контакты. При срабатывании такое реле должно остыть и оно повторно включится. Хотя в конкретном примере возможно и ручное и автоматическое повторное включение. Для этого предназначена синяя кнопка с крестовидной прорезью справа на лицевой панели, при закрытой крышке она заблокирована.

Выбор для конкретного двигателя

Допустим, у нас есть двигатель АИР71В4У2. Его мощность 0.75 кВт. У нас есть трёхфазная сеть с линейным напряжением 380В. Двигатель рассчитан на 220В, если соединить обмотки треугольником и 380В, если звездой. Номинальный ток такого двигателя с обмотками соединенными по схеме звезды 1.94А. Полная информация содержится на его шильдике, который вы видите на фото ниже.

Паспортные данные двигателя

Отсюда следует, что нам нужно подобрать тепловое реле для двигателя с током в 1.94 А. Ток срабатывания теплового реле должен превышать номинальный ток двигателя в 1.2 – 1.3 раза. То есть:

Пусть двигатель работает в составе механизма, в котором допускаются кратковременные, но значительные перегрузки, например для подъёма малых грузов. Тогда ток уставки выбираем в 1.3 раза больше номинального тока асинхронного электродвигателя.

Т.е реле должно сработать при токе 2.5-2.6А. Нам подходят такие реле:

РТЛ-1007, с токовым диапазоном 1.5-2.6 А;

РТЛ-1008, токовый диапазон 2,4-4 А;

РТИ-1307, токовый диапазон 1,6. 2,5 А;

РТИ-1308, токовый диапазон 2,5. 4 А;

ТРН-25 3,2А (с помощью регулятора можно понизить или повысить ток на 25%).

Методы регулировки реле

Шаг первый – определить уставку теплового реле:

N1 = (Iн – Iнэ)/cIнэ

где Iн — номинальный ток нагрузки электродвигателя, Iнэ — номинальный ток нагревательного элемента теплового реле, с — коэффициент деления шкалы (например, с = 0,05).

Шаг второй – введение поправки на температуру окружающей среды:

где Т — температура окружающей среды, °С.

Шаг четвертый – выставить регулятор на нужное число делений N.

Поправка на температуру вводится, если температура окружающей среды слишком высокая или низкая. Если на температуру в помещении где установлено реле значительно влияет температура на улице, то поправку следует производить зимой и летом.

Проверка

Рассмотрим на примере реле типа ТРН. Чтобы убедиться в исправности реле нужно:

1. Проверить состояние корпуса, нет ли на нем трещин или сколов.

2. Проверить при подключенной нагрузке с номинальным током.

3. Разобрать реле и проверить целостность контактов, остутствие на них нагара,

4. Проверить, не согнуты ли нагреватели.

5. Проверить расстояние между биметаллом и нагревательными элементами. Оно должно быть одинаковым, если нет, то отрегулировать с помощью крепежных винтов.

6. Подать номинальный ток через один из нагревателей, установить уставку в 1.5 раза больше номинального тока. В таком состоянии реле работает 145 с, затем постепенно поворачивают эксентрик регулировки в положение «-5», до срабатывания реле.

7. После активного охлаждения в течение 15 минут проверяют второй нагревательный элемент таким же способом.

Схема проверочного стенда:

Схема проверочного стенда

Краткое резюме

Тепловые реле – важный элемент в защите электрооборудования. С его помощью вы защитите своё устройство от перегрузок, а его характеристики позволят переносить кратковременные скачки тока без ложных срабатываний, чего не может обеспечить автоматический выключатель.

Реле могут использоваться как вместе с магнитными пускателями соединяясь с его выходными клеммами напрямую, тем самым образуя единую конструкцию, так и в качестве самостоятельных защитных устройств, размещаться в щитке на дин рейке и в электрошкафах.

Защита эл двигателя от перегрева. Выбираем защиту электродвигателя от перегрузок. Тепловые автоматические выключатели

В рубрике «Общее» на сайте «Насосы и принадлежности» рассмотрим эксплуатацию электрических двигателей. В процессе эксплуатации электродвигателей могут возникать различные неисправности. Мы будем рассматривать электродвигатели, которые эксплуатируются с насосным оборудованием. Очень важно заранее предусмотреть все возможные сбои и как можно надежнее защитить оборудование от сбоев. Перечень причин, которые могут привести к отказу оборудования, включает: качество электроснабжения, качество монтажа, условия эксплуатации. Качество электроснабжения: повышенное или пониженное напряжение, скачки напряжения, обрыв фазы.

Качество монтажа: неправильный или некачественный монтаж.

Условия эксплуатации: недостаточное охлаждение двигателя (обдув), высокая температура окружающей среды, пониженное атмосферное давление (работа на большой высоте над уровнем моря), высокая температура перекачиваемой жидкости, слишком большая вязкость перекачиваемой жидкости, частые включения/выключения электродвигателя, заклинивание ротора.

Число пусков в час

Очень часто в технических характеристиках к насосному оборудованию присутствует такой параметр, как количество пусков в час. Необходимость контролировать этот параметр заключается в том, что каждый раз, когда производится запуск электродвигателя, происходит пяти-семи кратное превышение номинального рабочего тока. Высокие пусковые токи нагревают обмотки статора двигателя. Если электродвигатель не успевает остывать из-за частых пусков, то это может привести к выходу его из строя или сокращению срока службы изоляции (пробою изоляции обмоток). Количество пусков, которое может происходить в течение часа, рассчитывает и определяет завод изготовитель. Эта информация размещается в технических характеристиках или в инструкции по эксплуатации.

Защита электродвигателей

Чтобы избежать непредвиденных сбоев и дорогостоящего ремонта электродвигателя в процессе эксплуатации, в первую очередь, необходимо обеспечить двигатель защитными устройствами. Защита электродвигателя имеет три уровня:

  • Внешняя защита от короткого замыкания. Самый простой способ – это установка внешних предохранителей.
  • Внешняя защита от перегрузок. Это защита по току.
  • Встроенная защита. Это защита от перегрева обмоток с помощью тепловых автоматических выключателей или датчиков PTС . Для встроенной тепловой защиты всегда требуется исполнительное внешнее устройство – пускатель для тепловых автоматических выключателей и реле контроля температуры обмотки двигателя, (как пример, TER-7 производства ETI Словения) для датчиков PTС.

Для защиты оборудования от перегрузок и короткого замыкания необходимо определить, какое устройство защиты будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания.

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает цепь при заданном значении перегрузки по току или возникновении короткого замыкания. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого вреда. Сразу же после отключения по перегрузке можно легко возобновить работу автоматического выключателя. Автоматические выключатели бывают двух видов: тепловые и магнитные.

Тепловые автоматические выключатели – это надёжный и экономичный тип защитных устройств, которые используются для электродвигателей. Конструктивно автоматический выключатель состоит из электромагнитного расцепителя, теплового расцепителя и дугогасящей камеры. Они могут выдерживать большие перегрузки по току, которые возникают во время запуска электродвигателя, и защищают электродвигатель при заклинивании ротора. Тепловые автоматические выключатели нечувствительны к напряжению, но чувствительны к температуре.

Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный пускатель – это комбинированный электрический прибор. В состав магнитного пускателя входят: контактор переменного тока, тепловое реле и кнопки включения и выключения. Магнитный автоматический выключатель нечувствителен к изменению температуры окружающей среды: она не влияет на предел его срабатывания, но чувствителен к изменению напряжения. Автоматические выключатели подбираются по номинальному току, потребляемому электродвигателем.

Реле перегрузки:

  • При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.
  • Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.
  • Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Деление изделий на классы определяет, за какой период времени реле размыкает цепь при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифры определяют время, необходимое реле для отключения. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее, при 600% номинального тока, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 – в течение 30 секунд и менее.

Устройства внешней защиты: плавкие предохранители, автоматические выключатели, – реагируют на превышение тока, который потребляет электродвигатель в процессе эксплуатации. Они предназначены для отключения электродвигателя, если ток превышает номинальное значение. Внешнее устройство защиты предохраняет двигатель от выхода из строя в случае блокировки ротора.

При перегреве обмоток электродвигателя этот вид защиты не работает. Примеры:

  • Когда в крышку вентилятора двигателя попадают посторонние предметы, или двигатель смонтирован крышкой вентилятора очень близко от стенки (недостаточно охлаждение), то происходит медленный нагрев до опасной температуры;
  • Очень высокая температура окружающей среды 40°С и выше;
  • Когда внешняя защита двигателя выставлена на слишком высокий ток срабатывания или настроена неправильно;
  • Когда происходят частые включения/выключения электродвигателя, то за короткий период времени пусковые токи могут перегреть обмотки двигателя.

Устройства внутренней защиты обмоток, такие как автоматические выключатели и терморезисторы, намного эффективнее, чем устройства внешней защиты. Это объясняется тем, что они встраиваются в обмотки статора и измеряют температуру непосредственно в обмотках. Самыми распространёнными устройствами внутренней защиты являются тепловые автоматические выключатели и терморезисторы PTC.

Тепловой автоматический выключатель и термостаты

Тепловые автоматические выключатели – это биметаллические пластины (таблетки), размыкающие цепь при увеличении температуры в обмотках (на рис).

Они имеют широкий диапазон температур отключения. Бывают двух видов: с нормально открытыми и нормально закрытыми контактами. Наиболее часто применяются таблетки с нормально закрытыми контактами. Одну или две таблетки встраивают в обмотки статора, соединяют последовательно и выводят на клеммную коробку. Затем при электрическом монтаже двигателя эти контакты напрямую подключают в цепь питания катушки пускателя или контактора. При достижении температуры в обмотках статора равной температуре срабатывания биметаллической пластины, происходит разрыв цепи питания пускателя, и двигатель останавливается. После остывания обмоток, контакты снова замыкаются, и двигатель включается в работу.

Терморезисторы PTC

Терморезисторы PTС (терморезисторы с положительным температурным коэффициентом сопротивления) встраиваться в обмотки электродвигателя заводом изготовителем. Обычно устанавливаются три последовательно соединенных датчика PTC: по одному в каждой обмотке. Цвета проводов датчиков помогают определить температуру срабатывания. Температура срабатывания терморезисторов находится в диапазоне от 90°C до 180°C с шагом 5°. (на рис)

Выводы терморезисторов подключаются к реле контроля температуры, которое отключает цепь питания двигателя при резком увеличении сопротивления. Терморезисторы имеют нелинейную характеристику зависимости сопротивления от температуры. При температуре окружающей среды, сопротивление трех терморезисторов равно примерно 200 Ом; но оно резко увеличится до 3 кОм при достижении температуры отключения реле. Реле контроля температуры обмотки двигателя отключает двигатель от цепи питания при достижении сопротивления 3,3 кОм. После снижения температуры сопротивление терморезисторов уменьшается, и когда сопротивление снижается до 1,8 кОм, реле включает двигатель в работу. Реле контроля температуры TER-7 имеет функцию контроля исправности датчиков, проверка на отсутствие обрыва и короткого замыкания. Функция «memory – память» при срабатывании реле, контакты остаются в разомкнутом состоянии до вмешательства обслуживающего персонала. Возврат в рабочее состояние происходит после нажатия на кнопку «reset – сброс».

Для надежной защиты электродвигателей в процессе эксплуатации необходимо использовать все три вида защит: внешнюю, внутреннюю и встроенную.

В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.

Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.

Как правило, для двигателей напряжением до 1000 Вт предусматривается:

  • защита от коротких замыканий;
  • защита от перегрузки.

Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.

Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.

Для защиты двигателя от перегрузки используется:

  • Тепловая защита;
  • Температурная защита;
  • Максимально токовая защита;
  • Минимально токовая защита;
  • Фазочувствительная защита.

Температурная защита

Наиболее эффективной защитой двигателей является температурная защита .

Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.

Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.

В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом — позисторы. Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно. Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.

Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева. Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).

Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.

Пороги термозащиты

Характеристики датчиков температурной защиты

Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.

В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.

Температура срабатывания датчиков температурной защиты:

Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.

Сопротивление одного позистора составляет 30 — 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.

Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:

  • В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
  • В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя

Тепловая защита двигателя Grundfos

Двигатели должны быть всегда защищены от нагрева до температуры, которая может разрушить систему изоляции обмоток. В зависимости от конструкции двигателя и области применения, тепловая защита может также выполнять другие функции, например, предотвращать двигатель от разрушающей температуры в частотном преобразователе, если он установлен на двигателе.

Тип тепловой защиты зависит от типа двигателя. Конструкция двигателя вместе с его энергопотреблением должны быть приняты во внимание при выборе типа тепловой защиты. В общем говоря, двигатели должны быть защищены в следующих ситуациях:

1) Неисправности вызывающие медленный нагрев обмоток двигателя:

  • длительная перегрузка
  • длительный период пуска
  • уменьшенное охлаждение/ недостаточное охлаждение
  • повышение температуры окружающей среды (в помещении)
  • частые пуски и остановы
  • колебания частоты сети
  • колебания напряжения питания

2) Неисправности вызывающие быстрый нагрев обмоток двигателя:

  • блокировка ротора
  • пропадание (обрыв) фазы

Тепловая защита(TP)

В соответствии с европейским стандартом IEC 60034-11, тип тепловой защиты двигателя должен быть указан на заводской табличке (шильдике) с обозначением TP.

Таблица1.4.19 показывает обзор обозначений тепловой защиты.

(1-я цифра)

функции

срабатывания

(2-я цифра)

(3-я цифра)

Индикация уровней допустимой температуры, при которой срабатывает тепловая защита, защищающая двигатель.

Табл. 1.4.19. Обозначения тепловой защиты.

Термисторная защита (PTC)

Термисторы PTC (с положительным температурным коэффициентом — Positive Temperature Coefficient) могут быть встроены в обмотки двигателя на производстве или установлены позже в качестве модернизации. Обычно 3 термистора PTC установлены последовательно: по одному в каждой фазной обмотке двигателя. Они могут быть различными: с температурами срабатывания от 90°C до 180°C с шагом в 5 градусов. Термисторы PTC должны быть подключены к реле термисторной защиты, которое улавливает мгновенный рост сопротивления термистора, в момент, когда он нагревается до своей температуры срабатывания. Эти устройства (усилители сигнала) не линейны. При температуре окружающей среды сопротивление комплекта из 3-х термисторов будет равняться 200-300 Ом и оно мгновенно возрастет в тот момент, когда термистор достигнет температуры срабатывания.

Если температура возрастает далее, сопротивление термистора PTC может достигнуть несколько тысяч Ом. Реле термисторной защиты обычно устанавливают на сопротивление срабатывания 3000 Ом или менее, согласно европейскому стандарту DIN 44082. Обозначение тепловой защиты для термисторов PTС для двигателей мощностью менее 11 кВт- TP211, если термисторы PTC встроены в обмотки на заводе-изготовителе. Если термисторы PTC установлены после изготовления двигателя (модернизация) — то тепловая защита обозначается как TP111. Обозначение тепловой защиты для PTC в двигателях мощностью более 11 кВт — TP111.

Термовыключатель (термоконтакт) или термостаты

Термоконтакты — это маленькие биметаллические контакты, которые отключаются при нагреве. Термоконтакты производятся с различными температурами срабатывания, обычно открытого и закрытого типа. Наиболее популярный тип — это закрытый термоконтакт. Один или два последовательно подключенных термоконтакта встраиваются в обмотки двигателя. Термоконтакты должны быть подключены непосредственно в разрыв цепи катушки пускателя. В этом случае нет необходимости в использовании дополнительного реле. Данный тип защиты более дешевый по сравнению с термисторной (PTC), но с другой стороны, менее чувствительный и не способен уловить внезапную перегрузку при блокировке ротора. К термоконтактам относятся такие типы тепловой защиты как датчики Thermik, Klixon и PTO (Protection Thermique à Ouverture). Термоконтакты всегда обозначаются как TP111.

Однофазные двигатели

Однофазные двигатели стандартно поставляются с встроенной тепловой защитой . Тепловая защита обычно имеет принцип автоматического перезапуска , то есть включения двигателя. Это означает, что двигатель должен быть подключен к питанию таким способом , чтобы избежать автоматического включения двигателя.

Трехфазные двигатели

Трехфазные двигатели должны быть защищены согласно местным нормам и правилам. Этот тип двигателей обычно имеют встроенные контакты для повторного пуска двигателя с помощью внешней цепи управления.

Виды и аппараты защит электродвигателей

Аппараты максимальной токовой защиты. При работе ЭП может произойти замыкание электрических цепей между собой на землю (корпус), а также увеличение тока в силовых цепях свыше допустимого предела, вызванное стопорением движения исполнительного органа рабочей машины, обрывом одной из фаз питающего напряжения, резким снижением тока возбужден ДПТ. Для защиты ЭП и питающей сети от появляющихся в этих случаях недопустимо больших токов (сверхтоков) предусматривается максимальная токовая защита, которая может реализовываться различными средствами — с помощью плавких предохранителей, реле максимального тока и автоматических выключателей.

Плавкие предохранители (FU) — включаются в каждую линию (фазу) питающей сети между выключателем напряжения сети и контактами линейного контактора КМ, а также в цепи управления. На рисунке 2 показаны соответственно схемы защиты предохранителями АД, ДПТ и цепей управления.

Рисунок 2 – Защита цепей предохранителями

Основными элементами предохранителя являются плавкая вставка и дугогасительное устройство. Выбор плавкой вставки предохранителей производится по току, который рассчитывается таким образом, чтобы она не перегорала от пускового тока двигателя.

Для защиты электрических цепей ЭП при напряжении до 1000 В применяются следующие типы предохранителей: трубчатые без наполнителя серии ПР2; быстродействующие серии ПНБ-5; с высокой разрывной способностью серии ПП 31; трубчатые разборные с закрытыми патронами и наполнителем серии ПН 2; резьбовые серии ПРС. Плавкие вставки этих предохранителей калибруются на токи от 6 до 1000 А.

Реле максимального тока используются в основном в ЭП средней и большой мощности. Катушки этих реле FA1 и FA2 включаются в две фазы трехфазных двигателей переменного тока и в один или два полюса ДПТ между выключателем QS и контактами линейного контактора КМ. Размыкающие контакты этих реле включаются также в цепь катушки линейного контактора КМ. При возникновении сверхтоков в контролируемых цепях, превышающих токи срабатывания (уставки) реле FA1 и FA2, контакты этих реле размыкаются и силовые контакты линейного контактора КМ отключают двигатель от питающей сети (рис.3).

Уставки реле максимального тока должны выбираться таким образом, чтобы не происходило отключения двигателей при их пуске или других переходных процессах, т. е. когда токи в силовых цепях в несколько раз превышают номинальный уровень.

В качестве реле максимального тока в ЭП применяются реле мгновенного действия серии РЭВ 570 для цепей постоянного тока от 0,6 до 1200 А и серии РЭВ 571Т для цепей переменного тока от 0,6 до 630 А. Время их срабатывания порядка 0,05 с. В схемах управления применяются также реле серий РЭ 70, РЭВ 830, РЭВ 302 и др.

Автоматические воздушные выключатели (автоматы — QF). Эти комплексные многоцелевые аппараты обеспечивают ручное включение и отключение двигателей, их защиту от сверхтоков, перегрузок и снижения питающего напряжения. Для обеспечения выполнения этих функций автомат имеет контактную систему, замыкание и размыкание которой осуществляется вручную с помощью рукоятки или кнопки, максимальное токовое реле и тепловое токовое реле.

Важной частью автомата является механизм свободного сцепления,

который обеспечивает его отключение при поступлении управляющих или защитных воздействий, например при протекании токов перегрузки, коротком замыкании, снижении напряжения сети, а также при необходимости дистанционного отключения автомата.

Упрощенное устройство автомата показано на рисунке 4. Рабочий ток нагрузки протекает через контакт 1 автомата, нагреватель теплового реле 6 и катушку 9 реле максимального тока. При коротком замыкании в контролируемой цепи сердечник 10 реле максимального тока втягивается в катушку 9 и через толкатель 8 воздействует на рычаг 5 механизма свободного расцепления. Последний поворачивается по часовой стрелке и приподнимает защелку 4. При этом освобождается рычаг 3 и, воздействуя на пружину 2, размыкает контакты 1 автомата.

Рисунок 4 – Схема автоматического выключателя (а) и его условное графическое и буквенное обозначение (б)

Аналогично происходит отключение автомата при перегрузке цепи, когда ток в ней больше номинального (расчетного), но меньше тока короткого замыкания. В этом случае ток, проходя по нагревателю 6 теплового реле, вызывает нагрев биметаллической пластины 7, в результате чего свободный конец этой пластины поднимается вверх и через рычаг 5 открывает защелку 4, вызывая этим отключение контактов автомата.

Часто в автоматах применяют тепловые расцепители без нагревателя, в этом случае контролируемый ток пропускается непосредственно через биметаллическую пластину. В маломощных автоматах такой расцепитель может выполнять также функции элемента максимальной токовой защиты.

Автоматические выключатели широко используются для коммутации и защиты силовых и маломощных цепей ЭП всех видов.

Применяемые в ЭП автоматические выключатели серий АП 50, АК 63, А 3000, А 3700, АЕ 2000, ВА, ВАБ, «Электрон» различаются между собой числом контактов (полюсов), уровнями номинальных тока и напряжения, набором и исполнением реализуемых защит, отключающей способностью, быстродействием. Диапазон их номинальных токов составляет 10. 10 000 А, а предельных коммутируемых токов 0,3. 100 кА. Время включения различных автоматов находится в пределах от 0,02 до 0,7 с.

Нулевая защита. При значительном снижении напряжения сети или его исчезновении эта защита обеспечивает отключение двигателей и предотвращает самопроизвольное их включение (самозапуск) после восстановления напряжения.

В тех случаях, когда двигатели управляются кнопками контакторов или магнитных пускателей, нулевая защита осуществляется самими этими аппаратами без применения дополнительных средств. Например, если в схемах исчезло или сильно понизилось напряжение сети, катушка линейного контактора КМ потеряет питание и он отключит двигатель от сети. При восстановлении напряжения включение двигателя возможно только после нажатия на кнопку управления SB2.

Тепловая защита отключает двигатель от источника питания, если, вследствие протекания по его цепям повышенных токов происходит значительный нагрев его обмоток. Такая перегрузка возникает, например, при обрыве одной из фаз трехфазного АД или СД.

Тепловая защита двигателей осуществляется с помощью тепловых, максимальных токовых реле и автоматических выключателей. Тепловые реле (КК) включаются в две-три фазы трехфазных двигателей непосредственно или через трансформаторы тока (рисунок 5). Для защиты ДПТ тепловые реле включаются в один или два полюса цепи их питания. Размыкающие контакты тепловых реле включаются в цепи катушек главных (линейных) контакторов или в цепь защитного реле.

Действие теплового реле основано на эффекте изгибания биметаллической пластинки при нагревании из-за различных температурных коэффициентов линейного расширения образующих ее металлов.

Рисунок 5 – Включение тепловых реле в электрические цепи

В ЭП применяются электротепловые двухполюсные реле серий ТРН на номинальные токи от 0,32 до 40 А, однополюсные реле серий ТРТП на токи от 1,75 до 550 А и трехполюсные реле серий РТЛ на токи от 0,17 до 200 А. Эти реле имеют регулируемую уставку тепловой защиты; при токе 1,2Iном время их срабатывания 20 мин.

Тепловая защита двигателей может осуществляться также автоматическими выключателями и магнитными пускателями, если они имеют встроенные тепловые расцепители.

При повторно-кратковременных режимах работы ЭП, когда процессы нагрева реле и двигателя различны, защита двигателей от перегрузок осуществляется с помощью максимальных токовых реле FA1 и FA2. Токи уставок этих реле выбираются на 20. 30% выше номинального тока двигателя. Так как, ток уставки реле в этом случае ниже пускового тока, то при пуске двигателя его контакты шунтируются контактами реле времени, имеющего выдержку времени несколько большую времени пуска двигателя.

Статьи

Защита электродвигателя

Надежная и бесперебойная работа двигателя обеспечивается в первую очередь правильным выбором его параметров, а также установкой необходимых систем его защиты.

К таким аппаратам относятся:

Вышеперечисленные электрические устройства являются средствами ограничения развития аварий и предотвращения неноминальных режимов работы электродвигателя.

Основным и наиболее эффективным средством для защиты электрических машин является электрическая защита, которая делиться на следующие виды:

  • максимально-токовая защита (автоматы, предохранители, электромагнитные реле)
  • защита от перегрузки или тепловая защита (тепловое реле, автоматы с тепловым расцепителем)
  • защита от неполнофазного режима работы (тепловые и электромагнитные реле)
  • защита от минимального напряжения (реле минимального напряжения)

Существенно значение в процессе эксплуатации имеет правильность выбора и настройка защитного аппарата.

В настоящее время широкое распространение получили автоматы защиты двигателя (АЗД) сочетающие в себе устройства защиты от короткого замыкания и перегрузки (тепловой защиты). Большинство известных брендов выпускают подобные устройства типа MS (ABB), ПРК (IEK), GV2 (SCHNEIDER ELECTRIC), MMS (ESQ) на номиналы от 0,6 А до 63 А (и выше).

Серийно выпускаемые автоматы защиты двигателя выполняют функцию максимальной токовой защиты и теплового реле.

Максимальная токовая защита обладает многократностью действия и позволяет осуществить защиту двигателя не только от короткого замыкания, но и от других ненормальных режимов работы (застопоривания двигателя, ненормальных увеличений тока). Особенностью данного типа защиты является возможность регулирования тока срабатывания в пределах от 70% до 200 % от номинального катушки.

регулировка автомата

Тепловая защита имеет актуальность при продолжительных режимах работы электродвигателя (более 30 минут)и служит для предохранения перегрева обмоток электрической машины при длительных перегрузках. Также тепловое реле, входящее в состав автомата защиты двигателя сможет осуществить защиту от работы в двухфазном режиме.

Различаются автоматы защиты двигателя по рабочим диапазонам номинальных токов двигателей.

Пример таблицы выбора оборудования по номинальному току и мощности двигателя приведен ниже:

Номинальны параметры АЗД

Аппараты защиты двигателей следует выбирать таким образом, чтобы фактический ток двигателя находился в пределах диапазона уставок по току.

В части использования функции теплового реле, следует отметить на невозможность его применения в электроприводах, работающих в повторно-кратковременных режимах работы (привод крана), а также имеющих разность температуры окружающей среды места установки теплового реле и электродвигателя. В приведенных случаях корректной защиты от теплового реле ждать не стоит.

Стоит отметить, что тепловое реле не защищает от тока короткого замыкания, а более того, само нуждается в защите. Для этого и служит максимальная токовая защита.

С целью реализации широких функциональных возможностей, автоматы защиты двигателя оснащаются следующими аксессуарами:

  • вспомогательными контактами для бокового/фронтального монтажа
  • сигнальным контактом для бокового монтажа
  • расцепителем минимального напряжения
  • дистанционными расцепителями

Предусмотрены варианты корпусов со степенью защиты IP65.

Схема управления с применением автоматов защиты двигателя позволяет сократить затраты и уменьшить габариты установки, обеспечивая при этом высокую скорость реакции при возникновении неноминальных режимов.

Подробное руководство по выбору автоматов защиты на примере бренда ABB можно скачать по ссылке — Руководство по выбору.

голоса
Рейтинг статьи
Читайте так же:
Теплоотражающий костюм ток 2000
Ссылка на основную публикацию
Adblock
detector