Azotirovanie.ru

Инженерные системы и решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Работа эл. тока, мощность эл. тока. Закон Джоуля-Ленца

Работа эл. тока, мощность эл. тока. Закон Джоуля-Ленца.

При упорядоченном движении заряженных частиц поле совершает работу по их перемещению по проводнику. Эту работу принято называть работой тока.

Если за промежуток времени через поперечное сечение произвольного участка проводника проходит заряд , то электрическое поле за это время совершит работу , та как напряжение на концах участка численно равно работе, которая совершается при прохождении по этому участку эл.заряда в 1 Кл. При прохождении по этому же участку заряда в 5 Кл работа будет в 5 раз больше.

Следовательно, для определения работы на участке цепи надо напряжение на концах этого участка умножить на эл.заряд, прошедший по нему. Так как сила тока то эта работа равна

Что работа эл.тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.

Согласно закона сохранения энергии, эта работа должна быть равна изменению энергии данного участка цепи. Или обратное – энергия, которая выделялась на данном участке цепи, равна работе тока.

Для измерения работы эл.тока нужны вольтметр, амперметр и часы, которые на практике называют счетчиками.

Формулу для работы тока можно записать по-другому, выразив напряжение через силу тока , либо силу тока через напряжение через . Получим еще две формулы —

Первой формулой удобно пользоваться при последовательном соединении (ток одинаков) , второй – при параллельном (напряжение одинаково).

Любой электрический прибор рассчитан на потребление определенного количества энергии в единицу времени. Поэтому, наряду с работой тока, важное значение имеет понятие мощность тока.

Мощность эл. тока (Р) численно равна работе, совершенной в единицу времени. Отсюда .

Мощность эл.тока (Вт=1В А) равна произведению напряжения на силу тока.

С помощью закона Ома можно получить еще две формулы —

Существуют специальные приборы – ваттметры, которые непосредственно определяют мощность эл.тока в цепи.

Единицы измерения – по формуле можно определить, что . Однако на практике это неудобно, так как время измеряется в секундах, а работают эл.приборы месяцами. Поэтому время стали измерять в часах, а работу – в ватт-часах.

Если на участке цепи не совершается механическая работа, и ток не производит химических действий, то электрический ток только нагревает проводник (см. 10 вопрос). Это происходит потому, что эл.поле ускоряет электроны, они сталкиваются с ионами кристаллической решетки и передают им свою энергию. В результате возрастает энергия хаотического движения ионов вокруг положения равновесия.

Это и означает увеличение внутренней энергии. Температура повышается и проводник отдает теплоту окружающим телам. Через определенное время после замыкания этот процесс устанавливается и температура перестает изменяться.

Однако к проводнику за счет работы электрического поля непрерывно поступает энергия. Но его внутренняя энергия остается неизменной, так как проводник передает окружающим телам количество теплоты, равное работе тока (только в случае, когда вся работа тока идет на увеличение внутренней энергии).

В неподвижных металлических проводниках вся работа эл.тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающей среде или телам путем теплопередачи. Следовательно, количество теплоты, выделяемое проводником, равно работе эл. тока.

Читайте так же:
Количество теплоты выделяемое проводником с током решение задач

Отсюда закон Джоуля-Ленца: , , количество теплоты, выделяемое проводником, равно произведению квадрата силы тока на сопротивление проводника и времени.

На основании опытов этот закон вывели Джоуль и Ленц, независимо друг от друга.

Тепловое действие эл.тока используют в различных электронагревательных приборах — плитки, утюги, чайники. Основная часть нагревательного прибора – нагревательный элемент, проводник с большим удельным сопротивлением, который выдерживает без разрушения нагрев до высоких температур (1200 0 С). Чаще всего используют сплав «нихром» — никель, хром, марганец и железо.

Закон Джоуля-Ленца

как мы уже знаем, при движении свободных электронов по проводнику, электрический ток должен преодолеть сопротивление материала. Во время этого движения зарядов происходят постоянные столкновения атомов и молекул вещества. При этом энергия движения и сопротивления превращается в тепловую. Ее зависимость от тока была впервые описана двумя независимыми учеными Джеймсом Джоулем и Эмилем Ленцем. Поэтому закон и получил двойное название.

Определение, количество теплоты, выделившееся за единицу времени на конкретном участке электрической цепи прямо пропорционально произведению квадрата силы тока на данном участке и его сопротивлению.

Математически, формулу можно записать так:

Любой проводник всегда нагревается, если через него течет ток. Но перегрев проводников очень опасен, т.к может повредите не только электронную аппаратуру, но и стать причиной пожара. Так например, в случае короткого замыкания перегрев материала проводника огромен. Поэтому для защиты от коротких замыканий и больших перегревов в электронные схемы добавляются специальные радиокомпоненты — плавкие предохранители. Для их изготовления используется материала, который быстро плавятся и обесточивают питающую цепь при достижении током максимальных значений. Плавкие предохранители необходимо выбирать в зависимости от площади сечения проводника.

Закон Джоуля-Ленца актуален как для постоянного, так и для переменного тока. Согласно нему работает множество различных нагревательных устройств. Ведь, чем тоньше проводник, тем больший ток по нему проходит за более большой промежуток времени, тем больше количество тепла выделиться в результате этого.

Я надеюсь вы помните помнить, что сила тока зависит от напряжения. Появляется вопрос, почему ноутбук не нагревается так сильно как утюг? Потому, что в основании утюгаимеется спиральная проволока изготовленная из стали, которая отличается низкой сопротивляемостью. Плюс стальная подошва, поэтому утюг разогревается до высоких температур, и мы можем им гладить.

А схема любого ноутбука имеет стабилизатор напряжения, который понижает 220 вольт до 19 вольт. Плюс сопротивление всех схем и компонентов достаточно высокое. Дополнительно для охлаждение имеется кулер и медные тепловые радиаторы.

Работа закона Джоуля-Ленца хорошо просматривается на практике. Самый известный пример его применения – обыкновенная лампа накаливания или галогенная лампа, в которой свечение нити осуществляется благодаря прохождению по ней тока под высоким напряжением.

На основании закона Джоуля-Ленца работает и контактная сварка, где создание сварного соединения совершается путем нагрева металла, за счет проходящего через него тока и деформации свариваемых частей путем сжатия.

Электродуговая сварка, также работает на физических принципах закон Джоуля-Ленца. Для совершения сварочных работ электроды разогревают до такого состояния, чтобы между ними возникла сварочная дуга. Эффект вольтовой дуги открыл русский ученый В.В. Петров, используя принципы закрна Джоуля-Ленца.

Читайте так же:
Формула количества теплоты для переменного тока

Кроме математической формулы, этот закон имеет и дифференциальную форму. Предположим, что по неподвижному проводнику течет ток и вся его работа тратится только на нагревание. Тогда, согласно закону сохранения энергии, получаем следующее математическое выражение:

Закон Джоуля-Ленца: история возникновения

Довольно трудно представить жизнь современного человека без электричества. Оно стало одним из главных и самых ценных атрибутов современного существования. Фактически любой человек, который когда-либо работал с электричеством, знает, что при прохождении по проводам тока у них есть свойство нагреваться. Отчего же это зависит?

Что такое ток

Ток – это упорядоченное движение заряженных частиц, которые называются электронами. И если ток протекает по проводнику, то в нём начинают происходить разные физические процессы, а именно сталкиваются электроны с молекулами.

Молекулы бывают нейтральные или те, которые потеряли свою отрицательно заряженную частицу. В результате столкновений или электроны могут становиться нейтральными молекулами, или при этом выбивается из другой такой же молекулы электрон, образовавший положительно заряженный ион. Во время этих столкновений расходуется кинетическая энергия заряженных частиц. Именно эта энергия и становится теплом.

На тепловой нагрев проводника может влиять и сопротивление. Например, можно взять определённое тело и тащить его по земле. Земля в этом случае — сопротивление. Что же с ним будет? Правильно, между телом и поверхностью будет происходить сила трения, которая, в свою очередь, нагревает тело. Ток в этом случае ведёт себя точно так же.

закон джоуля ленца

Зависимость

И, внимая все вышеупомянутое, учёным удалось определить эту зависимость между силой тока, сопротивлением и количеством тепла. Эта зависимость носит название закон Джоуля-Ленца, формула которого известна всем физикам. В 1832—1833 годах русским физиком Эмилием Ленцем было обнаружено, что при тепловом воздействии на металлические проводники их проводимость капитально изменялась. Это фактически усложняло работу учёного и мешало рассчитывать электрические цепи.

Тогда же молодому учёному пришла в голову мысль о том, что, возможно, существует какая-то зависимость между силой тока и температурой проводника. Но как быть? В то время отсутствовали точные электрические приборы, позволяющие измерить силу тока, сопротивление, не было даже источника стабильного ЭДС. Ленца это не остановило, он решил провести опыт.

Опыты русского физика

Суть этого опыта была настолько проста, как и все гениальное, что его может повторить даже школьник. Учёный сконструировал специальный прибор, который служил для измерения количества тепла, выделяемого проводником. Этим прибором оказался обычный сосуд, вовнутрь которого Ленц заливал раствор разбавленного спирта и ставил проводник – платиновую проволоку, на которую подавался электрический ток.

После того как прибор был создан, учёный начал проводить опыты. Он измерял точное количество времени, необходимое для того, чтобы спирт в сосуде был нагрет до 10 о С. На это было потрачено много не только месяцев, но и лет. И в 1843 году, спустя 10 лет, был опубликован закон, суть которого заключалась в том, что нагревание проводника током пропорционально квадрату служащего для нагревания тока.

электрическое поле в проводнике с током

Джоуль и Ленц

Но не тут-то было! Оказывается, несколько лет назад английский физик Джеймс Прескотт Джоуль проводил аналогичные опыты, и уже опубликовал свои наблюдения. Как быть? Ленц не сдался и внимательно изучил работу Джоуля и пришёл к выводу, что, пусть они и проводили одинаковые эксперименты, опыты Ленца были гораздо точнее. В связи с чем научное сообщество добавило к работе Джоуля поправки Ленца и этот закон стал называться как закон Джоуля-Ленца. Математическая формулировка закона выглядит таким образом:

  • I – сила тока, А;
  • U – напряжение, В;
  • t – время, которое ток затрачивает на прохождение проводника, с.
Читайте так же:
Тепловой расцепитель для автоматического выключателя

Сам же закон звучит так: количество тепловой энергии, выделяемой в проводнике, через который течёт электрический ток, равно произведению силы тока, напряжения и времени прохождения тока через проводник.

закон джоуля ленца формула

Закон Ома

Однако будет ли всегда верным это утверждение? Можно попробовать вывести его, используя закон Ома. Судя по нему U = I*R, где R — сопротивление, Ом.

Учитывая закон Ома, можно подставить значение в формулу Q = I*U*t = I 2 *R*t. Из этого можно сделать вывод, что количество теплоты напрямую зависит и от сопротивления проводника. Также для закона Джоуля-Ленца будет справедливо и это утверждение: I = Q = I*U*t.

Все три формулы будут верны, однако Q = I 2 *R*t будет верной для любых ситуаций. Две другие тоже являются правильными, однако при определённых обстоятельствах.

закон ома

Проводники

Теперь о проводниках. Изначально в своих опытах Джоуль и Ленц использовали платиновые проволоки, как и было упомянуто выше. Во всех похожих экспериментах учёные того времени использовали в основном металлические проводники, так как они были довольно недорогими и стабильными. Не удивительно, ведь до сих пор металлические проводники – основной тип проводников, в связи с чем изначально считалось, что закон Джоуля-Ленца был применим только к ним. Однако чуть позже было обнаружено, что этот закон применим не только к металлическим проводникам. Он верен для любых из них. Сами проводники по классификации можно разделить на:

  • Металлические (медь, железо, серебро и т.д.). Главную роль в них играют отрицательно заряженные частицы (электроны), которые протекают по проводнику.
  • Жидкие. В них же за движение зарядов отвечают ионы – это атомы, в которых или слишком много, или слишком мало электронов.
  • Газообразные. В отличие от своих коллег, в таких проводниках ток определяется движением как ионов, так и электронов.

И несмотря на различия, в любом случае при увеличении силы тока или сопротивления увеличится и количество тепла.

электрическая лампочка

Применение закона другими физиками

Открытие закона Джоуля-Ленца сулило огромные перспективы. Ведь, по сути, этот закон позволил создавать своего рода разные электронагревательные приборы и элементы. Например, чуть позже после открытия закона учёные заметили, что при нагревании определённых элементов они начинают светиться. Они захотели поэкспериментировать с ними, используя разные проводники, и в 1874 году русский инженер Александр Николаевич Лодыгин изобрёл современную лампу накаливания, нить которой была сделана из вольфрама.

Применяется закон Джоуля-Ленца и в электротехнике – например, при создании плавких предохранителей. Плавкий предохранитель – это некий элемент электрический цепи, конструкция которого сделана так, что при протекании по нему тока выше допустимого значения (например, при коротком замыкании) он перегревается, плавится и размыкает силовую цепь. Даже обычный электрический чайник или микроволновая печь, которая есть фактически у каждого, работает согласно этому закону.

Читайте так же:
Ограничитель тока короткого замыкания с тепловым взводом икзтв гефест

ленц

Заключение

Довольно трудно определить вклад этих учёных в современную электронику и электротехнику, но одно можно сказать точно – появление закона Джоуля-Ленца перевернуло представление людей об электричестве и дало более конкретные знания о том, что такое электрическое поле в проводнике с током.

Без сомнения, открытый этими великими учеными-физиками закон стал определяющей ступенью во всей науке, именно благодаря этому открытию впоследствии были совершены другие более или менее грандиозные достижения других ученых. Вся наука представляет собой тесное переплетение открытий, каких-то разрешенных и неразрешенных задач. Рассмотренный в этой статье закон определенным образом повлиял на многие исследования и оставил неизгладимый и вполне отчетливый след в науке.

Закон Джоуля-Ленца

В словесной формулировке звучит следующим образом [2] :

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля.

Математически может быть выражен в следующей форме:

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах [3] :

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.

В интегральной форме этот закон имеет вид

Применяя закон Ома, можно получить следующие эквивалентные формулы:

Практическое значение

Снижение потерь энергии

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно — значит, ток в сети I на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Выбор проводов для цепей

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

По этой причине для передачи необходимой мощности через современные магистральные воздушные линии электропередач, их проектируют под сверхвысокое напряжение (до 1150 кВ), чтобы обеспечить сверхнизкие токи в ЛЭП.

Электронагревательные приборы

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Читайте так же:
Автоматический выключатель без теплового расцепителя шнейдер электрик

Плавкие предохранители

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Закон Джоуля Ленца

Ток тратиться на возрастание электроэнергии внутри проводника, если он не движется и химические превращения в нем не происходят. Как следствие — нагревание проводника или выделение тепла.

Q = ULt

Произведя замену по закону Ома U на RL. Получаем:

Q = RL 2 t

Равенство данной формулы было сделано в качестве эксперимента как Джоулем так и Ленцем, причем пришли они к этому независимо друг от друга. Поэтому и носит справедливое название Закон Джоуля — Ленца.
Так как с помощью времени изменяется сила тока, тогда величину тепла которое выделяется по истечению данного времени t. Сможем выявить с помощью формулы.

д л формула

Отталкиваясь от Q = RL 2 t формулы, которая определяет количество тепла, проводником выделяющееся, можем сделать равенство дающее характеристику выделения тепла в любом месте проводника. Следуя закону Ленца-Джоуля по истечению времени dt в этом количестве тепло и выделится.

dQ = RL 2 dt = pdl/dS (jdS) 2 dt =pj 2 dVdt

в котором dV = dS dl — выражение элементарного количества
Разбив величины dQ = RL 2 dt = pdl/dS (jdS) 2 dt =pj 2 dVdt, на dV и dt находим объем тепла, которое выделяется в конкретном объеме , в конкретный промежуток времени.
Qуд = pj 2
Аналогично с названием выражения dQ = RL 2 dt = pdl/dS (jdS) 2 dt =pj 2 dVdt, выражение Qуд следует называть удельной тепловой мощностью тока.
Равенство Qуд = pj 2 это дифференциальная форма закона Джоуля-Ленца.
Pуд = pj 2

Важно то, что ученые вывели закон опираясь на однородный участок цепи. Но как следствие из равенств Q = RL 2 t и Qуд = pj 2 данный закон подходит и к неоднородным участкам цепи, если соблюдается условие, что его работающие силы не имеют химического происхождения.

Нужно обращать внимание на выбор провода в цепи.

Тепло которое при работе, выделяется проводником, так или иначе выходит за его приделы. Когда сила тока в нем перейдет максимальную отметку допустимого значения, вероятно очень сильное нагревание. Данный проводник может стать источником пожара предметов стоящих по близости с ним, а сам может расплавиться. Стоит соблюдать требования указанные в нормативных документах при сборе проводника, в регламенте выбора сечения.

Прибор Электро-нагреватель.

Когда сила тока одинакова во всей электрической цепи, значит в любом месте цепи выделяться тепло будет больше, завися от сопротивления.Исходя из данного, мы можем специально увеличить сопротивление для увеличения тепла или большей теплоотдачи. Так к примеру и работает электро-нагреватель. провода в них используются с низким сопротивлением, из-за этого их нагревание мы не замечаем.

Заметка: транспортная компания (http://tk-lidertrans.ru/) ООО «ТК»ЛИДЕРТРАНС», осуществляет грузоперевозки. Имеет большой опыт работы.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector