Azotirovanie.ru

Инженерные системы и решения
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Закон Джоуля-Ленца. Плавкий предохранитель

Закон Джоуля-Ленца. Плавкий предохранитель.

Photo of author

Наверняка многие из вас обращали внимание на то, что при прохождении тока через проводник он нагревается и порой довольно сильно. В чем же тут причина и как можно рассчитать степень нагрева? Сегодня мы обсудим все эти вопросы и найдем на них ответы!

В одной из предыдущих статей мы разбирались с понятием тока и выяснили, что возникновение такого явления как электрический ток связано, в первую очередь, с перемещением заряженных частиц (электронов/ионов) по проводнику. Так вот, эти перемещающиеся частицы сталкиваются с молекулами и атомами вещества, из которого состоит проводник, и передают им часть своей кинетической энергии. В результате этого процесса внутренняя энергия проводника увеличивается, что и приводит к нагреву. Очевидно, что чем больше ток (большее количество электронов перемещается по проводнику), тем больше будет возникать столкновений и, соответственно, проводник будет нагреваться сильнее.

Закон Джоуля-Ленца.

Зависимость количества теплоты от параметров электрической цепи вывели двое ученых — Д. Джоуль и Э. Ленц. Причем они пришли к одинаковому результату независимо друг от друга. И закон этот, что абсолютно логично, получил название закон Джоуля-Ленца Формулировка выглядит следующим образом.

Давайте запишем формулу:

Применив уже изученный нами закон Ома, мы можем получить несколько измененные выражения для расчета количества теплоты, выделяемого электрическим током:

Явление нагрева проводника при прохождении по нему тока широко применяется в различных бытовых приборах — утюгах, чайниках , обогревателях и т. д. Ключевым элементом любого из этих устройств является нагревательный элемент, который чаще всего выполнен в форме спирали. Вот так выглядит нагревательный элемент паяльного фена:

Нагреватель.

Плавкий предохранитель.

Кроме того, явление нагрева проводника используется в очень важном элементе практически любой электрической цепи, а именно в плавком предохранителе:

Плавкий предохранитель.

Давайте разберемся, как он работает и какие функции выполняет.

Любой электрический прибор, любая электрическая цепь рассчитаны на определенные значения тока. При превышении этой величины происходит чрезмерный нагрев элементов цепи и проводников. А это приводит в лучшем случае к выходу прибора из строя, а в худшем — к воспламенению. Для того, чтобы обезопасить цепь необходимо как то ограничить протекающий по ней ток. Вот именно эта задача и стоит перед плавким предохранителем

Главной частью предохранителя является тонкая проволока из легкоплавкого материала, которая расположена внутри специальной трубки. Толщина проволоки рассчитана так, что она выдерживает определенное значение протекающего через нее тока. А при превышении силы тока свинцовая проволока плавится и цепь оказывается разомкнутой. Таким образом, сам предохранитель выходит из строя, но разрывая электрическую цепь, спасает все остальные элементы (более дорогостоящие) от поломки. А конструктивно плавкий предохранитель выполнен таким образом, что никаких нежелательных побочных эффектов, например взрывов и возникновения открытого огня, не возникает. Как видите, это действительно полезнейший элемент практически любой электрической цепи!

На этой позитивной ноте мы заканчиваем наш сегодняшний разговор о процессе нагрева проводников при прохождении электрического тока, до встречи в будущих статьях!

Закон Джоуля — Ленца

В словесной формулировке звучит следующим образом [2] :

Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, равна произведению плотности электрического тока на величину напряженности электрического поля.

Математически может быть выражен в следующей форме:

Закон также может быть сформулирован в интегральной форме для случая протекания токов в тонких проводах [3] :

Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивления участка.

В интегральной форме этот закон имеет вид

Читайте так же:
Тепловое движение электрического тока используется в

Применяя закон Ома, можно получить следующие эквивалентные формулы:

Практическое значение [ | ]

Снижение потерь энергии [ | ]

При передаче электроэнергии тепловое действие тока в проводах является нежелательным, поскольку ведёт к потерям энергии. Подводящие провода и нагрузка соединены последовательно — значит, ток в сети I на проводах и нагрузке одинаков. Мощность нагрузки и сопротивление проводов не должны зависеть от выбора напряжения источника. Выделяемая на проводах и на нагрузке мощность определяется следующими формулами

Выбор проводов для цепей [ | ]

Тепло, выделяемое проводником с током, в той или иной степени выделяется в окружающую среду. В случае, если сила тока в выбранном проводнике превысит некоторое предельно допустимое значение, возможен столь сильный нагрев, что проводник может спровоцировать возгорание находящихся рядом с ним объектов или расплавиться сам. Как правило, при выборе проводов, предназначенных для сборки электрических цепей, достаточно следовать принятым нормативным документам, которые регламентируют выбор сечения проводников.

По этой причине для передачи необходимой мощности через современные магистральные воздушные линии электропередач, их проектируют под сверхвысокое напряжение (до 1150 кВ), чтобы обеспечить сверхнизкие токи в ЛЭП.

Электронагревательные приборы [ | ]

Если сила тока одна и та же на всём протяжении электрической цепи, то в любом выбранном участке будет выделять тепла тем больше, чем выше сопротивление данного участка.

За счёт сознательного увеличения сопротивления участка цепи можно добиться локализованного выделения тепла в этом участке. По этому принципу работают электронагревательные приборы. В них используется нагревательный элемент — проводник с высоким сопротивлением. Повышение сопротивления достигается (совместно или по отдельности) выбором сплава с высоким удельным сопротивлением (например, нихром, константан), увеличением длины проводника и уменьшением его поперечного сечения. Подводящие провода имеют обычное низкое сопротивление и поэтому их нагрев, как правило, незаметен.

Плавкие предохранители [ | ]

Для защиты электрических цепей от протекания чрезмерно больших токов используется отрезок проводника со специальными характеристиками. Это проводник относительно малого сечения и из такого сплава, что при допустимых токах нагрев проводника не перегревает его, а при чрезмерно больших перегрев проводника столь значителен, что проводник расплавляется и размыкает цепь.

Постоянный ток. Основные понятия и законы постоянного тока.

Определение: Направленное (упорядоченное) движение заряженных частиц называется электрическим током.

Если речь идет о движении микрочастиц, то говорят о токе проводимости. А, если о движении макрочастиц, то говорят о токе конвекции.

Исторически сложилось, что за направление тока принимают направление движения положительно заряженных частиц.

2.Плотность тока и сила тока

Для характеристики постоянного тока вводят две физические величины: векторную – плотность тока и скалярную – сила тока.

Определение: Плотностью тока называется физическая величина, определяющая заряд, прошедший через площадку dS за время dt следующим образом.

Пусть все частицы одинаковые и имеют заряд q и скорость υ, которая называется средней или упорядоченной или дрейфовой скоростью.

Определение: Силой тока называется поток плотности тока через какую-либо поверхность.

Силу тока можно определять как заряд, прошедший через поперечное сечение проводника за время Δt. Данное выражение используется для определения единицы заряда.

3.Единицы силы и плотности тока

Определение: 1 Ампер – единица СИ электрического тока, равная силе такого неизменяющегося тока, который при прохождении по двум бесконечно длинным проводникам ничтожно малой площади поперечного сечения вызывает силу взаимодействия между ними 2·10 -7 Н на 1 м длины.

Читайте так же:
Провод для датчика температуры теплого пола

Плотность тока измеряется в А/м 2 .

4.Действия электрического тока

Непосредственно наблюдать электрический ток нельзя. О его существовании судят по макроскопическим проявлениям.

Измерительные приборы, определяющие ток.

Приборы нагревательных элементов.

Происходят химические превращения при протекании тока.

5.Уравнение непрерывности

Закон сохранения заряда утверждает, что в замкнутой системе заряд сохраняется. Если система не замкнута, то заряд может изменяться.

Данное уравнение называется уравнением непрерывности в интегральной форме. Производная по времени связана с временной зависимостью заряда. Данное уравнение считается постулатом. По смыслу – это закон изменения заряда.

Используя понятие объемной плотности заряда и формулу Остроградского-Гаусса

– уравнение непрерывности в дифференциальной форме.

Если ток постоянный, то , следовательно, линии плотности тока являются замкнутыми.

6.Поле в проводнике при постоянном токе

Если есть ток, значит, есть движение зарядов, следовательно, есть сила, которая заставляет двигаться заряды, есть ток, есть напряженность, которая направлена вдоль тока. В общем случае напряженность направлена под углом к поверхности. Если есть напряженность, то градиент потенциала вдоль проводника не равен нулю, следовательно, потенциал вдоль проводника изменяется. Говорят о падении потенциала.

7.Закон Ома в дифференциальной форме

Плотность тока и напряженность вдоль проводника взаимосвязаны между собой. Разумно предположить, что это самая простая связь, т.е. линейная.

где σ – удельная электропроводность.

Данный закон является постулатом.

Для металлов закон выполняется почти всегда, для полуметаллов начинаются отклонения при очень больших плотностях тока. Для других линейную связь можно заменить тензорной и закон Ома замыкает уравнения Максвелла.

Из этого соотношения следует, что линии плотности тока и линии напряженности при постоянном токе совпадают, а, следовательно, распределение полей можно изучать по распределению тока (метод электролитической ванны).

8.Закон Ома в интегральной форме.

Наряду с удельной электропроводностью, вводят понятие удельного сопротивления.

Сила тока I вдоль проводника не изменяется.

Интеграл в левой части назовем сопротивлением проводника между точками 1 и 2.

– напряжение между точками электрической цепи.

– закон Ома в интегральной форме.

9.Сопротивление и проводимость.

Сопротивление зависит от геометрии и от вещества, из которого сделан проводник.

Для цилиндрического проводника одинакового поперечного сечения оно вычисляется особенно просто.

Измерив сопротивление, можно вычислить ёмкость и наоборот.

Данное устройство иногда называется конденсатором с утечкой.

По физическому смыслу, удельное сопротивление – это сопротивление куба вещества с ребром 1 м, если подводящие провода подключены к центрам противоположных граней.

Работа и мощность тока

Когда ток проходит по однородному участку цепи, электрическое поле совершает работу. За время Δ t по цепи протечет заряд Δ q = I Δ t .

Электрическое поле на выделенном участке совершит работу

∆ A = ( φ 1 — φ 2 ) ∆ q = ∆ φ 12 I ∆ t = U I ∆ t ,

где U = Δ φ 12 обозначает напряжение. Эту работу называют работой электрического тока.

Интерпретация закона сохранения энергии. Закон Джоуля-Ленца

Закон Ома для однородного участка цепи при сопротивлении R отражает формула:

Умножим обе части выражения на I Δ t и получим соотношение:

R I 2 ∆ t = U I ∆ t = ∆ A .

Полученный результат является выражением закона сохранения энергии для однородного участка цепи.

Работа Δ A электрического тока I , протекающего по неподвижному проводнику с сопротивлением R , преобразуется в тепло Δ Q , выделяющееся на проводнике.

Читайте так же:
Сила тока через теплоемкость

∆ Q = ∆ A = R I 2 ∆ t

Данный закон называется законом Джоуля-Ленца.

Закон носит название сразу двух известных физиков, поскольку экспериментальным путем был установлен ими обоими в независимости друг от друга.

Мощность электрического тока есть отношение работы тока Δ A к интервалу времени Δ t , за которое эта работа была произведена.

Можно сказать проще: мощность – это работа, выполненная в единицу времени. Запишем формулу, связывающую работу тока и его мощность:

P = ∆ A ∆ t = U I = I 2 R = U 2 R

Работу электрического тока выражают в джоулях ( Д ж ) , мощность тока измеряется в ваттах ( В т ) , время – в секундах ( с ) : 1 В т = 1 Д ж 1 с . Измерение мощности тока происходит при помощи ваттметра, а работа находится расчетно как результат перемножения силы тока, напряжения и времени протекания тока по цепи: A = I U t .

Следующей разберем полную цепь постоянного тока, включающую в себя источник с электродвижущей силой δ и внутренним сопротивлением r и внешний однородный участок с сопротивлением R .

Закон Ома для полной цепи выглядит так:

Перемножим обе части выражения с Δ q = I Δ t и получим соотношение, которое будет служить выражением закона сохранения энергии для полной цепи постоянного тока:

R I 2 ∆ t + r I 2 ∆ t = δ I ∆ t = ∆ A с т

Левая часть выражения содержит Δ Q = R I 2 Δ t (тепло, которое выделяется на внешнем участке цепи за время Δ t ) и Δ Q и с т = r I 2 Δ t (тепло, которое выделяется внутри источника за такое же время).

Выражение δ I Δ t является равным работе сторонних сил Δ A с т , которые действуют внутри источника.

При протекании электрического тока по замкнутой цепи происходит преобразование работы сторонних сил Δ A с т в тепло, которое выделяется во внешней цепи ( Δ Q ) и внутри источника ( Δ Q и с т ) .

∆ Q + Q и с т = ∆ A с т = δ I ∆ t

Необходимо отметить следующий факт: в указанное соотношение не включена работа электрического поля. Когда ток проходит по замкнутой цепи, электрическое поле работы не совершает; значит тепло производится лишь посредством сторонних сил, которые действуют внутри источника. Электрическое поле здесь выполняет перераспределение тепла между различными участками цепи.

Внешней цепью может служить не только проводник с сопротивлением R , но и какое-то устройство, которое потребляет мощность, к примеру, электродвигатель постоянного тока. Тогда R необходимо расценивать как эквивалентное сопротивление нагрузки. Энергия, которая выделится во внешней цепи, имеет возможность частично или полностью преобразоваться как в тепло, так и в иные виды энергии, к примеру, в механическую работу, совершаемую электродвигателем. Таким образом, тема использования энергии источника тока имеет важное практическое значение.

Коэффициент полезного действия источника

Полная мощность источника (или работа, которая производится посредством сторонних сил за единицу времени) составляет:

P и с т = δ I = δ 2 R + r

Внешняя цепь выделяет мощность:

P = R I 2 = δ I — r I 2 = δ 2 R ( R + r ) 2

Отношение η = P P и с т равное η = P P и с т = 1 — r δ I = R R + r , носит название коэффициента полезного действия источника.

На рис. 1 . 11 . 1 изображена зависимость мощности источника P и с т , полезной мощности P , которая выделяется во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной δ , и внутренним сопротивлением r . Ток в цепи имеет возможность меняться в пределах от I = 0 (при R = ∞ ) до I = I к з = δ r (при R = 0 ).

Рисунок 1 . 11 . 1 . Зависимость мощности источника P и с т , мощности во внешней цепи P и КПД источника η от силы тока.

Изображенные графики показывают, что максимальная мощность во внешней цепи P m a x , составляющая P m a x = δ 2 4 r , может быть достигнута при R = r . При этом ток в цепи есть I m a x = 1 2 I к з = δ 2 r ; коэффициент полезного действия источника составляет 50 % . Максимальное значение КПД будет достигнуто при I → 0 , т. е. при R → ∞ . При коротком замыкании полезная мощность P = 0 и вся мощность выделятся внутри источника, что с большой вероятностью может обернуться его перегревом и разрушением. КПД источника в этом случае обратится в нуль.

Читайте так же:
Когда используется тепловое действие тока

Работа и мощность электрического тока. Закон Джоуля-Ленца

1.9 Работа и мощность электрического тока. Закон Джоуля-Ленца.

Работу сил электрического поля, создающего упорядоченное движение заряженных частиц в проводнике, т.е. электрический ток, называют работой тока.

Работа, совершаемая электрическим полем по перемещению заряда q на участке цепи, равна:

A=q•U=I•U•t=I 2 *R•t= U 2 /R*t

где I — сила тока на данном участке, U — напряжение на участке цепи, t — время прохождения тока по участку цепи, q == It — электрический заряд (количество электричества), протекающий через поперечное сечение проводника за промежуток времени t. Единицей измерения работы служит джоуль: 1 Дж = 1 А* 1 В* 1 с. 1 Дж есть работа постоянного тока силой в 1 А в течение 1 с на участке напряжением в 1 В.

По закону сохранения энергии эта работа равна изменению энергии проводника.

Мощность электрического тока при прохождении его по про­воднику с сопротивлением R равна работе, совершаемой током за единицу времени:

Единицей измерения мощности электрического тока в СИ служит ватт: 1 Вт = 1 Дж/с. Работу тока можно также определить следующим образом:

Единицей измерения работы также является киловатт-час (кВт • ч) или ватт-час (Вт • ч):

В этих единицах работу обычно выражают в электротехнике. Полную мощность, развиваемую источником тока с ЭДС и внутренним сопротивлением г, когда во внешней цепи включена нагрузка с сопротивлением R, определяют по формуле:

Полная мощность идет на выделение тепла во внешнем и внутреннем сопротивлении.

Полезная мощность (мощность, выделяемая во внешнем со­противлении) равна:

Pполез=I 2 R=e 2 R/(R+r) 2

Она используется в электронагревательных и осветительных приборах.

Теряемая мощность (мощность, выделяемая во внутреннем сопротивлении) равна:

Она не используется.

Мощность тока во всей внешней цепи при любом соединении равна сумме мощностей на отдельных участках цепи.

Работа электрического поля приводит к нагреванию провод­ника, если на участке цепи под действием электрического поля не совершается механическая работа и не происходят химические превращения веществ. Поэтому энергия (количество теплоты), выделяемая на данном участке цепи за время t, равна работе электрического тока:

Количество теплоты, выделяющееся проводником при нагре­вании его током, определяют по закону Джоуля-Ленца:

Этот закон был установлен экспериментально английским ученым Джеймсом Джоулем (1818-1889) и русским ученым Эмилием Христиановичем Ленцем (1804—1865) и сформулирован сле­дующим образом.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

При последовательном соединении проводников с сопротив­лением R1 и R2 количество теплоты, выделенное током в каждом проводнике, прямо пропорционально сопротивлению этих про­водников:

Количество теплоты, выделенное током в параллельно соеди­ненных двух участках цепи без ЭДС с сопротивлениями 2^ и И^, обратно пропорционально сопротивлению этих участков:

1.10. Электрический ток в металлах.

Прохождение тока через металлы (проводники I рода) не со­провождается химическим изменением, следовательно, атомы металла не перемещаются вместе с током. Согласно представле­ниям электронной теории, положительно заряженные ионы (или атомы) составляют остов металла, образуя его кристаллическую решетку. Электроны, отделившиеся от атомов и блуждающие по металлу, являются носителями свободного заряда. Они участву­ют в хаотическом тепловом движении. Эти свободные электроны под действием электрического поля начинают перемещаться упорядоченно с некоторой средней скоростью. Таким образом, прово­димость металлов обусловлена движением свободных электро­нов. Экспериментальным доказательством этих представлений явились опыты, выполненные впервые в 1912 г. советским акаде­миком Леонидом Исааковичем Мандельштамом (1879-1944) и Николаем Дмитриевичем Папалекси (1880-1947), но не опубли­кованные ими. Позже в 1916 г. американские физики Т.Стюарт и Ричард Чейс Толлин (1881-1948) опубликовали результаты своих опытов, оказавшихся аналогичными опытам советских ученых.

Читайте так же:
Количество теплоты в цепи переменного тока формула

Концы проволоки, намотанной на катушку, припаивают к двум изолированным друг от Друга металлическим дискам. При помощи скользящих контактов (щеток) к концам дисков присо­единяют гальванометр.

Катушку приводят во вращение, а затем резко останавлива­ют. Если предположить, что в металле есть свободные заряды, то после резкой остановки катушки свободные заряженные частицы будут двигаться некоторое время относительно проводника по инерции. Следовательно, в катушке возникнет электрический ток, который из-за сопротивления проводника будет длиться не­большое время. Направление этого тока позволит судить о знаке тех частиц, которые двигались по инерции. Так как возникаю­щий ток зависит от величины и массы зарядов, то этот опыт по­зволяет не только предположить существование в металле свобод­ных зарядов, но и определить знак зарядов, их массу и величину (точнее, определить удельный заряд — отношение заряда к массе).

Опыт показал, что после остановки катушки в гальванометре возникает кратковременный электрический ток. Направление этого тока говорит о том, что по инерции движутся отрицательно заряженные частицы. Измерив величину заряда, переносимого этим кратковременным током через гальванометр, удалось опре­делить отношение величины свободных зарядов к их массе. Оно оказалось равным е/т = 1,8 • 10 11 Кл/кг, что совпадает со значе­нием такого отношения для электрона, найденным ранее другими способами.

Итак, опыт показывает, что в металлах имеются свободные электроны, упорядоченное движение которых создает в металлах электрический ток.

Под влиянием постоянной силы со стороны электрического поля электроны в металле приобретают определенную скорость упорядоченного движения, которая является постоянной. Упоря­доченное движение электронов в металле можно рассматривать как равномерное движение, т.к. со стороны ионов кристалличес­кой решетки на них действует некоторая тормозящая сила — при столкновениях с ионами свободные электроны передают им кине­тическую энергию, приобретенную при свободном пробеге под действием электрического поля. Следовательно, средняя ско­рость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике v см Е. Учиты­вая связь напряженности и разности потенциалов на концах проводника (Е = U/d), можно сказать, что скорость движения электронов пропорциональна разности потенциалов на концах проводника v

От скорости упорядоченного движения частиц зависит сила тока в проводнике: I = qnv S, поэтому сила тока пропор­циональна разности потенциалов на концах проводника I

U, что дает качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Нагревание проводника при прохождении по нему постоянного тока можно объяснить тем, что кинетическая энергия электронов передается при столкновении ионов кристаллической решетки.

Количественную теорию движения электронов в металле можно построить на основе законов квантовой механики, класси­ческая механика Ньютона неприменима для описания этого движения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector