Azotirovanie.ru

Инженерные системы и решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Тепловое действие тока. Закон Джоуля – -конспект урока по физике (11 класс) на тему

Тепловое действие тока. Закон Джоуля – Ленца.
план-конспект урока по физике (11 класс) на тему

Голинская Татьяна Владимировна

Репетиторы Учи.Дома помогут подготовиться к ЕГЭ. Приходите на бесплатный пробный урок, на котором репетиторы определят ваш уровень подготовки и составят индивидуальный план обучения.

Бесплатно, онлайн, 40 минут

Предварительный просмотр:

Тепловое действие тока. Закон Джоуля – Ленца.

Урок физики в 11 классе

  1. Сформировать представление о тепловом действии электрического тока, о причинах этого действия.
  2. Установить количественный закон теплового действия тока – закон Джоуля-Ленца.
  3. Выявить (в ходе практической работы) зависимость выделившейся энергии от сопротивления проводника.

Совершенствовать интеллектуальные умения (наблюдать, сравнивать, применять ранее усвоенные знания в новой ситуации, размышлять, анализировать, делать выводы)

  1. Учить видеть практическую пользу знаний.
  2. Продолжить формирование коммуникативных умений.

Методическая тема: применение активных форм познавательной деятельности учащихся на уроке.

  1. Карточки с задачами (Приложение 1).
  2. Ответы к задачам на обратной стороне доски.
  3. Оборудование на партах: низковольтные лампы на подставке – 4 шт., 2 ключа, соединительные провода, 2 источника тока.

При изучении данной темы, учащиеся могут активно использовать знания, полученные ими при изучении курса физики 8 класса.

План проведения занятия

Приветствие, формулировка темы урока, плана работы

Готовятся к работе.

Принятие темы урока

Предлагает учащимся задачи разного уровня сложности по пройденной ранее теме. К доске приглашает трех учеников для решения задач.

Решенные задачи комментирует.

Получают карточку с тремя задачами. Каждый выбирает одну из предложенных задач, в зависимости от уровня усвоения темы. 3 ученика работают самостоятельно у доски, остальные решают задачу в тетрадях. Если ученик решил задачу на месте раньше, чем у доски, то можно сверить ответ. При условии, что получен верный ответ, можно решить задачу следующего уровня.

На доске приведено решение трех задач, в тетрадях решена как минимум одна задача. Решение задач прокомментировано.

3. Акцентуация знаний. Подготовка учащихся к активному восприятию, усвоению знаний

Предлагает учащимся ответить на вопросы.

  • Какое устройство называют
  • Для каких целей резисторы

можно включать в цепь, соединяя их различными способами?

  • Приведите примеры

различного соединения потребителей тока, с которыми вы встречались в быту.

  • На каком физическом

явлении основано действие этих

  • Назовите еще устройства и

приборы, в которых используется тепловое действие электрического тока.

  • Проводник постоянного
  • С целью изменения

сопротивления, а следовательно силы тока и напряжения на отдельных участках цепи.

  • Люстры, гирлянды,

электрические конфорки и т.д.

  • Тепловое действие тока —

при прохождении тока,

  • Кипятильник, паяльник,

Учащиеся готовы к восприятию новой темы. Мотивация изучения данной темы.

4. Изучение нового материала

  • Итак, электрический ток оказывает тепловое действие. Какова причина этого действия? Предлагает выяснить на примере металлических проводников.
  • В результате столкновений электронов с ионами кристаллической решетки, ионы получают дополнительный импульс от электронов, что увеличивает амплитуду колебания ионов, среднюю кинетическую энергию решетки, а следовательно, и температуру проводника.

Предлагает вопросы для обсуждения:

  • К чему приводит нагревание
  • Как определить количество

теплоты, выделяющееся при этом?

К доске приглашает учащегося для вывода формулы (закона Джоуля — Ленца)

Сообщает, что честь открытия количественного закона теплового действия тока принадлежит английскому физику Джеймсу Прескотту Джоулю (1818-1889 гг.). В 1841 г. он установил, что количество теплоты, выделяющееся в проводнике, прямо пропорционально его сопротивлению и квадрату силы тока. Независимо от Джоуля российский физик Эмилий Христианович Ленц (1804-1865 гг.) в 1842 г. нашел ту же закономерность, позднее она получила название закона Джоуля-Ленца.

Читайте так же:
Приведите примеры применения теплового действия тока в быту

Просит ответить на вопросы:

  • Какие еще законы физики

носят двойное название?

  • А если в электрической

цепи несколько потребителей, то какой из них выделит большее количество теплоты?

Предлагает проверить это на практике. С помощью имеющегося на столах оборудования, просит учащихся выяснить зависимость выделившейся энергии от сопротивления лампы при последовательном и параллельном соединении ламп.

Организует обсуждение результатов.

  • Важной характеристикой

электрического прибора является энергия, потребленная им в единицу времени, т.е. мощность. Каков физический смысл этой величины? Какова формула для расчета мощности, в каких единицах выражается эта величина?

Рассуждают, вспоминая строение металлов, изображая схему строения металлов на доске и в тетрадях. Объясняют нагревание проводника столкновениями электронов с ионами.

Тепловое действие тока закон джоуля ленца примеры использования

Вы уже хорошо знаете, что при прохождении электрического тока нить лампы накаливания нагревается настолько сильно, что начинает излучать видимый свет. Благодаря действию электрического тока нагреваются утюг и электрическая плита. А вот вентилятор и пылесос нагреваются незначительно, не становятся очень горячими (конечно, если все в порядке) и подводящие провода. От чего же зависит тепловое действие тока?

Рассуждаем о тепловом действии тока

Прохождение электрического тока всегда сопровождается выделением теплоты, и этот факт нетрудно объяснить.

Когда в проводнике идет ток, то свободные заряженные частицы, двигаясь под действием электрического поля, сталкиваются с другими частицами и передают им часть своей энергии. Электроны в металлах сталкиваются с ионами, расположенными в узлах кристаллической решетки, ионы в электролитах — с другими ионами, атомами или молекулами. В результате средняя скорость хаотичного (теплового) движения частиц вещества увеличивается — проводник нагревается. По закону сохранения энергии кинетическая энергия, приобретенная свободными заряженными частицами в результате действия электрического поля, преобразуется во внутреннюю энергию проводника.

Очевидно: чем чаще сталкиваются частицы, то есть чем больше сопротивление проводника, тем больше энергии передается проводнику и тем сильнее он нагревается. Таким образом, при неизменной силе тока количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально сопротивлению проводника.

Кроме того, с увеличением в проводнике силы тока количество выделяемой теплоты тоже увеличивается. Ведь чем больше частиц проходит через поперечное сечение проводника за единицу времени, тем больше столкновений частиц происходит.

|2 Открываем закон Джоуля — Ленца

Тепловое действие тока изучали на опытах английский ученый Дж. Джоуль(рис. 34.1) и российский ученый немецкого происхождения

Э. Х. Ленц(рис. 34.2). Независимо друг от друга они пришли к одинаковому выводу, который позже получил название закон Джоуля — Ленца:

Количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока:

На рис. 34.3 изображена схема опыта, доказывающего справедливость закона Джоуля — Ленца. Попробуйте описать этот опыт.

Закон Джоуля — Ленца был установлен экспериментально. Теперь же, зная формулу для расчета работы тока (A = UIt), данный закон можно вывести с помощью простых математических выкладок.

Если на участке цепи, в котором течет ток, не выполняется механическая работа и не происходят химические реакции, результатом работы тока будет только нагревание проводника. Нагретый проводник путем теплопередачи отдает полученную энергию окружающим телам. Следовательно, в данном случае согласно закону сохранения энергии количество выделенной теплоты Q будет равно работе A тока: Q = A.

Читайте так же:
Чем заизолировать провода теплого пола

Обращаем внимание на некоторые особенности вычисления количества теплоты

Для получения математического выражения закона Джоуля — Ленца мы воспользовались некоторыми предположениями. Исследования показали, что в любом случае количество теплоты, выделяющееся в участке цепи в результате прохождения тока, можно вычислить по формуле Q = 1 2 Rt.

Возникает вопрос: что делать, если сила тока неизвестна, а известно напряжение на концах участка цепи? Казалось бы, можно воспользоваться законом Ома. Действительно,

После сокращения на R получим:

Однако этой формулой, впрочем как и формулой Q = UIt, можно воспользоваться только в том случае, когда вся электрическая энергия расходуется на нагревание.

Если же на участке цепи есть потребители энергии, в которых выполняется механическая работа или происходят химические реакции, U 2

формулы Q =— t и Q = UIt использовать нельзя. В таких случаях при-R

меняют более сложные математические выражения, учитывающие всю совокупность явлений.

Учимся решать задачи

Задача. Определите сопротивление нагревателя, с помощью которого можно за 5 мин довести до кипения 1,5 кг воды, взятой при температуре 12 °С. Напряжение в сети равно 220 В, КПД нагревателя — 84 %.

Анализ физической проблемы. Когда в нагревателе проходит электрический ток, выделяется количество теплоты Qiioth. Часть ее (QnOTe3H) расходуется на нагревание воды до кипения, то есть до 100 °С.

Выразив Qhoth и Qnmesn через указанные в условии задачи величины, найдем искомую величину. Значение удельной теплоемкости с воды найдем в соответствующей таблице (см. табл. 1 Приложения).

Прохождение тока в проводнике сопровождается выделением теплоты. Количество теплоты, выделяющееся в проводнике при прохождении тока, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока: Q = I 2 Rt (закон Джоуля — Ленца).

1. Почему нагреваются проводники, в которых течет электрический ток?

2. Сформулируйте закон Джоуля — Ленца. Почему он имеет такое название? 3. Как математически записывается закон Джоуля — Ленца?

4. Какие формулы для расчета количества теплоты, выделяющегося

в проводнике при прохождении тока, вы знаете? Всегда ли можно ими

1. Сколько теплоты выделится за 10 мин в электроплите, если сопротивление нагревательного элемента плиты равно 30 Ом, а сила тока в нем 4 А?

2. Два проводника сопротивлениями 10 и 20 Ом включены в сеть напряжением 100 В. Какое количество теплоты выделится за 5 с в каждом проводнике, если они соединены параллельно?

3. Почему электрические провода, по которым подается напряжение к электрической лампе накаливания, не нагреваются, а нить накала лампы нагревается и ярко светится?

4. Электрокипятильник за 5 мин нагревает 0,2 кг воды от 14 °С до кипения при условии, что в его обмотке течет ток силой 2 А. Определите напряжение, поданное на электрокипятильник. Потерями энергии пренебречь.

5. В каждый из двух калориметров налили 200 г воды при температуре 20 °С. В один калориметр поместили нагреватель сопротивлением 24 Ом, во второй — сопротивлением 12 Ом. Нагреватели соединили последовательно и подключили к источнику тока (см. рис. 34.3). Определите температуру воды в каждом калориметре после нагревания, если оно длилось 7 мин при неизменной силе тока в цепи 1,5 А. Потерями энергии пренебречь.

6. Какой длины нихромовый провод нужно взять, чтобы сделать электрический камин, работающий при напряжении 120 В и выделяющий 1 МДж теплоты в час? Диаметр провода 0,5 мм.

Читайте так же:
Неисправности выключателя теплого пола

7. Сравните количества теплоты, которые необходимо затратить, чтобы расплавить медный и свинцовый провода, если эти провода имеют одинаковую массу и взяты при температуре 27 °С.

Закон Джоуля-Ленца: определение, практическое значение

Закон Джоуля-Ленца был открыт в 1841 и 1842 году двумя учеными Джеймсом Джоулем и Эмилием Ленцем. Ленц опубликовал результаты своей работы в 1842 году, на год позже Джоуля, но его эксперименты были более точными и вывод из опытов он вывел раньше.

Содержание статьи

Закон Джоуля-Ленца: определение, практическое значение

  • Закон Джоуля-Ленца: определение, практическое значение
  • Как понизить силу тока
  • Что такое электрический ток

Закон Джоуля-Ленца

Закон Джоуля-Ленца определяет количество теплоты, выделяющейся в проводнике, обладающим сопротивлением за время t, при прохождении через него электрического тока.

Q = a*I*2R*t, где
Q — колическтво выделяемой теплоты (в Джоулях)
a — коэффициент пропорциональности
I — сила тока ( в Амперах)
R — Сопротивление проводника (в Омах)
t — Время прохождения (в секундах)

Закон Джоуля-Ленца объясняет, что электрический ток — это заряд, который перемещается под действием электрического поля. При этом поле совершает работу, а ток обладает мощностью и выделяется энергия. Когда эта энергия проходит по неподвижному металлическому проводнику, то она становится тепловой, так как направлена на нагревание проводника.

В дифференциальной форме закон Джоуля-Ленца выражается как объемная плотность тепловой мощности тока в проводнике будет равна произведению удельной электрической проводимости на квадрат напряженности электрического поля.

Применение закона Джоуля-Ленца

Лампы накаливания были придуманы в 1873 году русским инженером Лодыгиным. В лампах накаливания, как и в электронагревательных приборах, применяется закон Джоуля-Ленца. В них используют нагревательный элемент, который является проводником с высоким сопротивлением. За счет этого элемента можно добиться локализованного выделения тепла на участке. Выделение тепла будет появляться при повышении сопротивления, увеличении длины проводника, выбором определенного сплава.

Одной из областей применения закона Джоуля-Ленца является снижение потерь энергии.
Тепловое действие силы тока ведет к потерям энергии. При передаче электроэнергии, передаваемая мощность линейно зависит от напряжения и силы тока, а сила нагрева зависит от силы тока квадратично, поэтому если повышать напряжение, при этом понижая силу тока перед подачей электроэнергии, то это будет более выгодно. Но повышение напряжения ведет к снижению электробезопасности. Для повышения уровня электробезопасности повышают сопротивление нагрузки соответственно повышению напряжения в сети.

Также закон Джоуля-Ленца влияет на выбор проводов для цепей. При неправильном подборе проводов возможен сильный нагрев проводника, а так же его возгорание. Это происходит когда сила тока превышает предельно допустимые значения и выделяется слишком много энергии. При правильном подборе проводов для электрических цепей стоит следовать нормативным документам.

Тепловое действие электрического тока – закон Джоуля-Ленца

Одним из явлений, происходящих при прохождении электрического тока по проводнику, является выделение энергии в виде тепла. Рассмотрим тепловое действие электрического тока более подробно.

Тепловое действие электрического тока – закон Джоуля-Ленца

Тепловое действие электрического тока

Еще в девятнадцатом веке опыты по изучению проводимости свидетельствовали, что ток, проходящий по нагрузке, нагревает ее. Исследования показали, что нагревается не только нагрузка, но и проводники.

Тепловое действие электрического тока – закон Джоуля-Ленца

Рис. 1. Тепловое действие электрического тока.

Данный факт легко объясним, если вспомнить, что электрический ток – это перемещение зарядов в веществе нагрузки. При движении заряды взаимодействуют с ионами кристаллической решетки, и отдают им часть энергии, которая и переходит в тепло.

Читайте так же:
Количество теплоты выделяемое током величина

Закон Джоуля-Ленца

Поскольку разность потенциалов (напряжение) на нагрузке равна работе, которую совершит единичный заряд, двигаясь по нагрузке, то для вычисления работы тока, необходимо напряжение умножить на заряд, прошедший через нагрузку. Заряд же равен произведению тока, проходящего по нагрузке, на время прохождения. Таким образом:

Детальным изучением теплового действия электрического тока в середине XIXв занимались независимо Д.Джоуль (Великобритания) и Э.Ленц (Россия).

Тепловое действие электрического тока – закон Джоуля-Ленца

Рис. 2. Джоуль и Ленц.

Было выяснено, что если нагрузка неподвижна, то вся работа электрического тока в этой нагрузке перейдет в тепло:

Как правило, напряжение на элементах электрической цепи различно, а ток в ней общий. Поэтому для определения теплового действия удобнее выразить напряжение через ток, учитывая сопротивление:

То есть, количество тепла, образующееся в нагрузке, равно произведению значения тока в квадрате, сопротивления и времени. Этот вывод носит название Закона Джоуля-Ленца.

Иногда ток нагрузки неизвестен, но известно ее сопротивление и подводимое напряжение. В этом случае удобнее выразить ток через известные величины:

и, подставив в формулу выше, получаем:

Из данной формулы можно видеть интересный факт – если в нагревательной плите сгорит часть спирали, и мы просто исключим сгоревшие места, то сопротивление спирали уменьшится, а поскольку напряжение сети останется прежним, то тепло, выделяемое плитой, возрастет. Мощность плитки увеличится.

Использование теплового действия электричества

Тепловое действие электрического тока находит широкое применение, в первую очередь, в нагревательных приборах.

Еще одним важным направлением использования теплового действия являются плавкие предохранители. Если необходимо отключить электрическую цепь при превышение допустимого тока, то в цепь можно включить плавкий предохранитель.

Тепловое действие электрического тока – закон Джоуля-Ленца

Рис. 3. Устройство плавкого предохранителя.

Это небольшая колба из негорючего материала, внутри которой проходит плавкая проволочка или лента, сопротивление которой рассчитано так, чтобы при превышении предельного тока она расплавилась, тем самым разорвав электрическую цепь.

Что мы узнали?

Вся работа тока в неподвижной нагрузке превращается в тепло. Тепловое действие электрического тока по закону Джоуля Ленца пропорционально квадрату тока, сопротивлению и времени. Данное явление широко применяется в плавких предохранителях и нагревательных приборах.

Тепловое действие тока

Электроток, проходящий по проводниковому элементу, за счет ударения свободных электронов об ионы и атомы нагревает его. Тепловое действие тока можно наблюдать во всех аспектах жизни человека: от работающих ламп накаливания и бытовых приборов до получения цветных металлов и добычи азота.

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Самодельный нагревательный прибор с нихромовой спиралью, что нагревается под воздействием электротока

Закон Джоуля-Ленца

Тепловое действие электрического тока – это не что иное, как переход электроэнергии в теплоту. Такой процесс отражается в законе Джоуля-Ленца, какой определяет количественную меру выделенной теплоэнергии.

Согласно этому закону, количественная мера тепла, какое излучается при прохождении электротока, пропорционально квадрату силы этого электротока, сопротивлению проводникового элемента и времени, за которое он протекает через проводник.

Формула, отражающая тепловое действие электротока (закон Джоуля-Ленца):

  • Q – количество теплоты;
  • I – сила электротока;
  • R – электросопротивление проводникового элемента;
  • t – время прохождения электротока.

Из формулы видно, что чем больше или сила электротока, или сопротивление проводника, тем больше теплоты будет выделяться. По этой причине нагревательные элементы в оборудовании и приборах изготавливаются из металлов, имеющих высокое электросопротивление.

Читайте так же:
Обратный тепловой ток перехода

Измеряется количество теплоты, выделенное электротоком, в джоулях – сокращенно «Дж».

Демонстрация закона Джоуля-Ленца

Демонстрация закона Джоуля-Ленца

Количество тепла, что выделяется при прохождении электротока силой в 1 А через проводниковое сопротивление в 1 Ом за 1 секунду, называется термическим эквивалентом и равно 0,24 малой калории.

Для справки. Малая калория – это количество тепла, которое потребуется 1 г воды, чтобы поднять свою температуру на 1 оС.

Степень проявления теплового действия электротока в проводнике можно наблюдать на специальном приборе, где на зависящее от силы тока расстояние посредством воздуха, нагреваемого проволокой, перемещается ртуть.

Применение теплового действия электротока

Нагревание проводниковой спирали под воздействием электротока, что приводит к свечению ламп накаливания

Нагревание проводниковой спирали под воздействием электротока, что приводит к свечению ламп накаливания

Применения тепловых свойств электротока очень разнообразны. Наиболее употребительные из них нижеследующие:

  1. Электрическое освещение, представленное:
  • лампами накаливания, в которых металлическая нить, помещенная в стеклянный баллон с выкаченным из него воздухом, накаливается током до состояния свечения (вместо воздуха лампа может быть наполнена инертным газом, например, азотом);
  • дуговыми фонарями, в которых электрический ток, проходящий через сомкнутые угли (угольные стержни), в момент небольшого их разведения образует искру, и между углями устанавливается вольтова дуга, приводящая в состояние сильного свечения концы углей.
  1. Электронагревательные приборы в виде сосудов и плит для изготовления пищи, утюгов или отопительных приборов, где теплота выделяется в проволоках или тонко раскатанном на слюдяных пластинках металле большого сопротивления;
  2. Сварка или паяние могут осуществляться посредством электрической дуги, какая образуется между подлежащей обработки частью и железным либо угольным стержнем. Возможно формирование вольтовой дуги и между двумя угольными электродами и дальнейшее направление дуги к месту спая путем оттягивания ее с помощью электромагнита;
  3. Применение тепловых свойств электротока в специальных печах для получения определенных веществ, например:
  • получение алюминия производится также с помощью теплового действия свойств электротока, для чего глинозем, содержащий алюминий, закладывается в угольную электропечь, в которой мощная вольтова дуга, образующаяся между ней и углем, расплавляет глинозем, после чего получившаяся жидкая масса подвергается электролизу, причем чистый алюминий выделяется на отрицательном полюсе;
  • получение стали может также осуществляться посредством электропечей с вольтовой дугой, в каких конечный продукт (сталь) получается путем выплавки из чугуна и сборных отбросов из металла теплом, выделяющимся между двумя угольными электродами либо между одним электродом из угля и вторым в виде самой расплавленной массы;
  • фабрикация карбидов производится также с помощью электрических печей;
  • добыча азота из воздуха производится также в электропечах, в которых вольтова дуга переменного тока высокого напряжения оттягивается магнитом к диску либо направляется в высокую трубку, а воздух, прогоняемый через эту дугу, благодаря высокой температуре, образует окись азота, которая перерабатывается в азотную кислоту, а затем в калийную селитру.
  1. Получение озона из воздуха производится путем электрических разрядов источника высокого напряжения, благодаря которым происходят окислительные процессы в воздухе, находящимся между электродами, и выделение озона. Озон широко применяется для отделки тканей, для освежения испорченного воздуха (озонирование) и главным образом для обезвреживания питьевой воды.

Внешний вид электрической печи для производства стали

Внешний вид электрической печи для производства стали

Тепловое действие тока имеет высокое значение для человека, так как представлено во многих аспектах его жизнедеятельности, в том числе в производственных цепочках многих перерабатывающих, добывающих предприятий.

Видео

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector