Azotirovanie.ru

Инженерные системы и решения
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

11. Источники электрического тока

11. Источники электрического тока

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию. В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника. Виды источников тока:

Механический источник тока — механическая энергия преобразуется в электрическую энергию (электрофорная машина, генераторы).

Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию (термоэлемент — две проволоки из разных металлов необходимо спаять с одного края, затем нагреть место спая, тогда между другими концами этих проволок появится напряжение). Применяются в термодатчиках и на геотермальных электростанциях.

Световой источник тока — энергия света преобразуется в электрическую энергию (фотоэлемент — при освещении некоторых полупроводников световая энергия превращается в электрическую). Применяются в солнечных батареях, световых датчиках, калькуляторах, видеокамерах.

Химический источник тока — в результате химических реакций внутренняя энергия преобразуется в электрическую (гальванический элемент — в цинковый сосуд вставлен угольный стержень. Стержень помещен в полотняный мешочек, наполненный смесью оксида марганца с углем. В элементе используют клейстер из муки на растворе нашатыря. При взаимодействии нашатыря с цинком, цинк приобретает отрицательный заряд, а угольный стержень — положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд — отрицательным электродом). Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Аккумуляторы — в автомобилях, электромобилях, сотовых телефонах.

Условное обозначение источника тока на электрической схеме

или батареи, состоящей из нескольких источников

Сторонние силы– силы, отличные по природе от сил электростатического происхождения. Эти силы могут быть обусловленыхимическими процессами, диффузией носителей заряда, вихревыми электрическими полями. Сторонние силы можно характеризовать работой, которую они совершают над перемещающимися по замкнутой цепи или ее участку зарядами. Стороннюю силу, действующую на заряд, можно представить в виде: , вектор Eст представляет напряженность поля сторонних сил.

Величина, равная работе сторонних сил по перемещению единичного положительного заряда в цепи, называется электродвижущей силой (ЭДС), действующей в цепи:

Тогда на участке цепи ЭДС равна

Интеграл, вычисленный для замкнутой цепи, дает ЭДС, действующую в этой цепи,.

12. Разветвленные цепи. Правила Кирхгофа

Расчет разветвленных цепей упрощается, если пользоваться правилами, сформулированными немецким физиком Г. Р. Кирхгофом. Этих правил два.

Первое из них относится к узлам цепи.Узлом называется точка, в которой сходится более чем два проводника. Ток, текущий к узлу, считается положительным, текущий от узла имеет противоположный знак. Первое правило Кирхгофа гласит, что алгебраическая сумма токов, сходящихся в узле, равна нулю:

Второе правило относится к любому выделенному в разветвленной цепи замкнутому контуру. Зададим направление обхода, изобразив его стрелкой. Применим к каждому из неразветвленных участков контура закон Ома: ;

При сложении этих выражений получается одно из уравнений

которое выражаетвторое правило Кирхгофа:для любого замкнутого контура алгебраическая сумма всех падений напряжения равна сумме всех ЭДС в этом контуре.

ИСТОЧНИКИ ЭЛЕКТРОПИТАНИЯ

Источники электропитания

Первичные сами вырабатывают электрическую энергию путем преобразования в нее других видов энергии, полученной в результате химических и прочих реакций.

К ним относятся различные электростанции (тепловые, атомные, гидравлические), химические преобразователи (аккумуляторы, гальванические и топливные элементы), термоэлектрические и фотоэлектрические генераторы (солнечные батареи) и др.

Вторичные предназначены для преобразования получаемой от первичного источника электроэнергии в напряжение с требуемыми параметрами. Для питания и нормального функционирования большинства электронных приборов требуется стабильное напряжение с различными значениями.

Вторичные источники имеют вид отдельных блоков или входят в состав различных электронных узлов. Кроме самого источника питания узлы могут включать дополнительные устройства, поддерживающие его нормальную работу при воздействии разных внешних факторов. К вторичным относятся трансформаторные и инверторные преобразователи, выпрямители и т. п.

Понятие первичных и вторичных источников относительно. Например, бытовая электросеть является первичным источником для домашних электроприборов, так как большинство устройств имеет свой внешний или встроенный блок питания, преобразующий входное напряжение до необходимых значений.

В свою очередь, трансформаторная подстанция, от которой питается бытовая электросеть, сама является вторичным источником по отношению к электростанции.

ИСТОЧНИКИ ПЕРВИЧНОГО ПИТАНИЯ

Как было сказано, к первичным источникам относятся устройства, преобразующие различные виды энергии в электроэнергию. Это может быть химическая, механическая энергия, световая, тепловая и энергия атомного распада.

  • гидроэлектростанции – преобразуют в электроэнергию гравитационную энергию воды;
  • химические источники (аккумуляторы, топливные и гальванические элементы) – переводят химическую энергию в электрическую;
  • дизель-генераторы – химическая энергия преобразуется сначала в механическую, потом в электрическую;
  • солнечные батареи – преобразуют энергию солнечного света в электрическую на основе физического закона фотоэффекта;
  • ветряные генераторы – преобразуют кинетическую энергию воздушных частиц;
  • термоэлектрические преобразователи – преобразуют тепловую энергию в электрическую.

Химические источники обычно используются в маломощных устройствах и как резервные источники. Работа топливных элементов основана на электрическом окислении топлива. В термоэлектрических устройствах электрический потенциал создает разница температур.

ИСТОЧНИКИ ВТОРИЧНОГО ПИТАНИЯ

Вторичные источники подключаются к первичным и преобразуют получаемую электроэнергию в выходное напряжение с требуемыми параметрами частоты, пульсации и т. д.

  • обеспечение передачи требуемой мощности с наименьшими потерями;
  • преобразование формы напряжения (переменного напряжения в постоянное, изменение частоты, формирование импульсов;
  • преобразование значение напряжения (повышение или понижение его величины, формирование нескольких величин для разных цепей);
  • стабилизация напряжения (его показатели на выходе должны находиться в заданном диапазоне);
  • защита (чтобы напряжение, превысившее допустимые значения вследствие неисправности, не вывело из строя аппаратуру или сам ИП);
  • гальваническое разделение цепей.

Существует два основных типа источников вторичного питания (ИВП) – трансформаторный и импульсный.

Трансформаторный блок питания.

Трансформаторный, или линейный ИВП – классический блок питания. Регулировка выходного напряжения происходит в нем непрерывно, то есть линейно.

  • трансформатор (корректирует напряжение в ту или иную сторону до нужной величины);
  • выпрямитель (преобразует переменное напряжение в постоянное);
  • фильтр (сглаживает пульсацию (колебания) в выпрямленном напряжении).

Также схема может включать защиту от короткого замыкания, фильтр высокочастотных помех, стабилизатор и др.

  • простота конструкции;
  • гальваническая развязка от сети;
  • надежность в эксплуатации.
  • большие габариты и вес, которые прямо пропорциональны его мощности;
  • относительно низкий КПД.

В бытовой технике линейные ИП малой мощности используются для питания плат управления стиральных машин, микроволновок, отопительных котлов.

Импульсный ИВП.

Импульсный блок питания устроен принципиально иначе и имеет более сложную конструкцию.

  • выпрямитель (входное напряжение сначала выпрямляется – преобразуется из переменного в постоянное);
  • блок широтно-импульсной модуляции – ШИМ (преобразует постоянное напряжение в импульсы определенной частоты и скважности);
  • частотный фильтр (в блоках без гальванической развязки);
  • трансформатор (в блоках с гальванической развязкой от сети).
Читайте так же:
Автоматические выключатели с регулированным тепловым расцепителем

В импульсных источниках вторичного напряжения стабилизация реализуется посредством обратной связи, что позволяет поддерживать выходное напряжение на заданном уровне независимо от скачков входных параметров.

Например, в блоках с гальванической развязкой в зависимости от величины выходного сигнала изменяется скважность (отношение частоты следования импульсов к их длительности) на выходе ШИМ-контроллера.

  • малый вес и небольшие размеры;
  • высокий КПД (до 98%);
  • широкий диапазон допустимого входного напряжения;
  • встроенная защита от короткого замыкания и других форс-мажоров;
  • невысокая цена;
  • по надежности сравнимы с трансформаторными ИП.
  • являются источниками высокочастотных помех, которые нельзя полностью устранить;
  • имеют ограничение по минимальной мощности нагрузки: не включаются, если она ниже требуемой.

Импульсные источники – это зарядки мобильных телефонов, блоки питания компьютеров, оргтехники, бытовой электроники.

БЕСПЕРЕБОЙНЫЕ И РЕЗЕРВНЫЕ ИСТОЧНИКИ

Источники бесперебойного и резервного энергоснабжения необходимы при краткосрочных и длительных отключениях электроэнергии. При отсутствии таких устройств частный дом может остаться без света, отопления и всей электротехники на неопределенный срок.

Бесперебойные.

Эти устройства обеспечивают работоспособность подключенных электроприборов и техники при кратковременных перебоях в поставках электроэнергии. Также они выполняют функцию защиты от скачков напряжения и помех.

Бесперебойники делятся на три категории:

Имеют самую простую конструкцию, высокий КПД и низкую стоимость. При отключении электроэнергии или выходе параметров напряжения за допустимые пределы источник автоматически включает встроенный аккумулятор.

Line-interactive.

Имеют аналогичную конструкцию плюс встроенный стабилизатор. Аккумулятор включается только тогда, когда стабилизатор неспособен справиться со стабилизацией входного напряжения. Его основные недостатки, как и у предыдущего устройства – это наличие промежутка времени, требуемого на переключение режимов работы, и невозможность корректировать частоту сети.

У таких источников самое высокое качество и стоимость. Они работают по принципу двойного преобразования: входное напряжение сначала преобразуется в постоянное, а затем с помощью инвертора обратно в переменное. Здесь не требуется время на переключение на питание от внешнего аккумулятора, он подключен в цепь и при стабильном энергоснабжении находится в буферном режиме.

  • для безопасного отключения устройств при перебоях в сети;
  • в охранно пожарной сигнализации, видеонаблюдении, контроле доступа;
  • для оборудования системы умный дом.

Резервные источники питания.

Эти устройства необходимы для питания электроприборов при длительных отключениях электроэнергии или когда объект находится далеко от линии электропередач.

Автономные электростанции бывают следующих видов:

Эффективны, но потребляют много топлива. Работают бесшумно, хорошо запускаются в зимний период.

Работают практически в любых условиях, но также требуют значительных финансовых вложений. Целесообразно их использование при суммарной потребляемой мощности свыше 6 кВт.

Используют природный источник энергии – солнечный свет. Их применение выгодно в условиях климата с большим количеством солнечных дней. Станции не имеют подвижных частей и отличаются высокой надежностью.

Они должны размещаться на возвышенности и в местности с регулярным движением воздуха, желательно в одном направлении. Конструкция имеет большой вес, осложняет ситуацию наличие подвижных частей.

Использование солнечных и ветряных генераторов целесообразно при их постоянной эксплуатации как альтернативных систем электроснабжения, так как они требуют значительных затрат на приобретение и установку и окупаются не сразу.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Тепловой источник тока преобразование энергии

Развитие современной техники и технологий тесно связано с поиском альтернативных источников энергии, в первую очередь электрической. Актуальным остается фактор увеличения объёма её производства. Кроме того, приоритетной целью является уход от традиционного использования углеводородного сырья и выработка энергии экологически чистым путём. Это диктуется возможностью истощения традиционных энергетических ресурсов на Земле. В наши дни усилия прогрессивных исследователей направлены на развитие «зеленой» энергетики, в которой особенно остро нуждается вся планета.

Обозначенным целям удовлетворяет такой источник энергии как термоэлектрическое ее преобразование. Оно основано на использовании практически любых источников теплового потока, даже при небольших перепадах температур, малоэффективных с других точек зрения их применимости. При этом попутно решается параллельная проблема утилизации излишнего теплового загрязнения окружающей среды. Последнее обстоятельство в последние годы является весьма актуальным в связи с ростом озабоченности мировой индустрии экологическими проблемами. В качестве исходной тепловой энергии, которую следует преобразовать в электрическую, можно использовать широкий спектр ее источников. Здесь можно ограничиться стандартной энергией, получаемой в маломощной топке, но возможно применение и менее традиционных, даже экзотических источников. К ним можно отнести и тепловую энергию, получаемую при нагреве твердой поглощающей поверхностью Солнцем, и утилизацию тепловых потер в трубопроводах, печных трубах, выхлопных трубах автомобилей и другие.

Среди различных термоэлектрических эффектов выделяю следующие три. Зеебек установил, что в цепи, состоящей из двух разнородных проводников, возникает ЭДС, если контакты этих проводников поддерживаются при различных температурах. В таком случае ЭДС называется термоэлектродвижущей. В относительно узком интервале она пропорциональна разности температур контактов:

— термоэлектрическая способность пары;

— температура холодного контакта

— температура горячего контакта

Удельная термоэлектрическая способность обычно является нелинейной функцией температуры, однако при использовании термопары в качестве источника энергии это обстоятельство не имеет принципиального значения. Это может быть важным только в случае использования термопары в качестве измерителя температуры или в устройствах автоматики.

Поглощение или выделение теплоты при прохождении электрического тока в месте спая двух разнородных проводников называется эффектом Пельтье. Количество выделяемого тепла и его знак зависят от силы тока, вида контактирующих веществ и времени прохождения тока.

— коэффициент Пельтье

— сила тока

— время протекания тока

Поскольку количество выделяемой теплоты зависит от первой степени силы тока, эффект является обратимым. Иначе говоря, если пропускать ток в обратном направлении, то на том же самом контакте имеет место поглощение теплоты. В общем случае в замкнутой электрической цепи имеется два контакта, и при прохождении тока на одном из них теплота выделяется, а на другом поглощается. Как правило, в практическом смысле обычно используется только один из контактов.

Эффект Томсона заключается в том, что в неравномерно нагретом однородном проводнике с постоянным током будет выделяться или поглощаться дополнительная теплота в зависимости от направления тока. Количество теплоты Томсона пропорционально времени, силе тока и перепаду температуры (ее градиенту), зависит от направления тока.

Читайте так же:
Что вызывает тепловое действие тока

— коэффициент Томсона

Направления практического применения такого преобразования достаточно разнообразны: от энергообеспечения космических аппаратов, питания оборудования газо- и нефтепроводов, морских навигационных систем до бытовых генераторных устройств [7].

Практическое применение термоэлектрических преобразователей многообразно. Следует в этой связи отметить следующие области:

  • автономные источники питания электроэнергии для обеспечения работоспособности котельных агрегатов, установок по переработке отходов и др.;
  • использование в полезных целях отводимого от различных двигателей и силовых установок (автомобильных, корабельных и др.) тепла, которое бесполезно рассеивается;
  • обеспечение питанием разнообразных устройств электроники, телеметрии и автоматики на объектах, удаленных от линий электропередачи, например, в геологических партиях;
  • преобразование тепла природных источников, таких, например, как геотермальных вод, гейзеров, солнечной радиации, в электрическую энергию;
  • источники питания для катодной защиты нефте- и газопроводов;
  • измерение тепловых потоков (тепломеры).

К серьезным преимуществам использования такого вида преобразователей можно отнести следующие факторы:

  • длительная работа без трудоемкого технического обслуживания;
  • использование теплоты от любых источников тепловой энергии;
  • полная независимость от среды использования;
  • эксплуатация независимо от расположения в пространстве;
  • отсутствие механически движущихся частей;
  • использование одноступенчатой статической системы преобразования первого рода.

Несмотря на все достоинства, отмеченные преобразователи широкого распространения не получили, особенно в промышленных масштабах, из-за крайне низкого КПД (5-7%, даже для полупроводниковых материалов) [1].

Материалы, из которых создаются термопары, разнообразны, но не все они одинаково эффективны. Коэффициент полезного действия металлических термопар: незначителен и достигает в лучшем случае десятых долей процента. Это связано с нерациональной тратой большого количества тепловой энергии, подводимого к спаю и малым значением термоэлектрической способности пары [3]. Так как в металлах концентрация свободных электронов практически остаётся неизменной в широком диапазоне температур, и их кинетическая энергия мало зависит от температуры, то возникающая диффузия электронов такова, что образующаяся разность потенциалов незначительна.

В полупроводниках, в отличие от металлов, наблюдается более активный рост количества носителей тока с увеличением температуры, и соответственно увеличение кинетической энергии. Именно эти важные отличия дают возможность наблюдать в них термоэлектродвижущие силы в десятки раз превышающие, чем действуют в металлах [3]. Происходит процесс переноса электронов из более горячей зоны, в менее горячую, где их концентрация понижена.

Для того, чтобы материал сохранял желаемые свойства при более высоких температурах, необходимо, чтобы он имел более широкую запрещенную зону и высокую температуру плавления. Такие материалы называются – тугоплавкими полупроводниками.

В корне изменить сложившуюся ситуацию могли бы разработка и внедрение новых материалов для термопреобразователей. Весьма эффективными в этом отношении являются материалы с наноразмерной структурой. К ним относятся нанокристаллические и нанокомпозиционные материалы с размерами основных структурных элементов, таких как кристаллиты или области второй фазы, порядка нескольких десятков нанометров. Основа работы первых из них состоит в изменении параметров электронной подсистемы, в частности энергии Ферми в металлах. Применение вторых требует развитие теоретических представлений о влиянии внутренних поверхностей раздела на электронные и энергетические характеристики этих материалов. Серьезной проблемой на этом пути является низкая термическая стабильность наноструктурных материалов. Под действием повышенных температур инициируются процессы рекристаллизации с укрупнением зерна. Механизмом этого феномена является повышенная скорость миграции границ зерен и фаз [4, 5]. Известно, что миграционная подвижность границ растет с температурой. В цитируемых работах получены аналитические выражения для скорости миграции границ в зависимости от температуры и типов их атомной структуры. Нестабильность свойств таких материалов связана с неравновесностью структуры и наномасштабным размером зерна. В результате нанокристаллическая структура преобразуется в субмикрокристаллическую, а при высоких температурах наиболее неравновесные системы стремятся к переходу в микрокристаллическую с размером зерна порядка микрон. Вторым типом релаксационных процессов является межзеренное проскальзывание [6], наиболее легко осуществляемое при температурах выше половины термодинамической температуры плавления материала. Этот тип деформации в определенной степени полезен для сохранения исходной структуры, поскольку снимает в значительной степени внутренние напряжения, т.е. действует в благоприятном направлении по сравнению с миграцией границ.

Скорость обоих типов происходящих процессов можно в значительной степени снизить путем введения в материал контролируемого количества примеси [1, 2]. Примесные атомы сегрегируются преимущественно на границах зерен, уменьшая их энергию. Примесь является своеобразным стопором для миграционных зернограничных процессов. При этом структура материала с ультрамелким зерном стабилизируется. Важно учитывать, что существующие технологии приготовления наноструктурных материалов приводят к появлению в большинстве случаев границ раздела в структурно неравновесном состоянии. При этом возникают границы общего типа, с малой долей специальных границ, имеющих низкую обратную плотность совпадающих узлов. Такие границы обозначаются как несоразмерные [5, 2]. Общепринятым признаком неравновесности границ зерен является наличие дальнодействующего поля механических напряжений, создаваемых ими. Еще одним существенным их свойством является значительная величина избыточного свободного объема на неравновесных границах зерен. Первый из этих факторов может приводить к сдвигу энергетических состояний носителей заряда в обратном пространстве. Второй фактор может приводить к смещению или образованию новых энергетических состояний в запрещенной зоне, подобно тому, как это имеет место в случае вакансий. Поскольку такая структура материала является неравновесной, она изменяется с течением времени, что изменяет характеристики термоэлектрических контактов.

В случае сегрегации примесных атомов на границах зерен или фаз они также могут создавать новые энергетические уровни, в тои числе и в запрещенной зоне. Это в равной степени относится как к гомогенным в химическом отношениии материалам, таким как нанокристаллическим или субмикрокристаллическим, так и материалам в химическом отношении неоднородным. К последним относятся композиционные материалы, в частности нанокомпозиты. Для адекватного описания электронных явлений в контактах двух или более материалах необходимо учитывать и анизотропию их армирования. Это может быть волокнистая, слоевая или объемная структура.

Таким образом, практическое применение открытых два века назад основных термоэлектрических эффектов в настоящее время становится все более актуальным, а новые технологии получения современных материалов позволяет считать, что у термоэлектрических источников энергии есть привлекательная судьба в будущем.

Источник Э.Д.С. и источник тока

Источники ЭДС и тока: основные характеристики и отличия

Электротехника связывает природу электричества со строением вещества и объясняет его движением свободных заряженных частиц под воздействием энергетического поля.
Для того чтобы электрический ток протекал по цепи и совершал работу, необходимо иметь источник энергии, совершающий преобразование в электричество:

механической энергии вращения роторов генераторов;

протекания химических процессов или реакций внутри гальванических приборов и аккумуляторов;

теплоты в терморегуляторах;

Читайте так же:
Объемная плотность тепловой мощности тока в проводнике равна

магнитных полей в магнитогидродинамических генераторах;

световой энергии в фотоэлементах.

Все они обладают различными характеристиками. Чтобы классифицировать и описать их параметры принято условное теоретическое разделение на источники:

Электрический ток в металлическом проводнике

Электрический ток в металлическом проводнике

Определение силы тока и электродвижущей силы в 18-м веке дали известные физики того времени.

Вольта и напряжение

Им считается идеальный источник, представляющий собой двухполюсник, на зажимах которого электродвижущая сила (и напряжение) всегда поддерживается постоянным значением. На него не влияет нагрузка сети, а внутреннее сопротивление у источника равно нулю.

На схемах он обычно обозначается кругом с буквой «Е» и стрелкой внутри, показывающей положительное направление ЭДС (в сторону увеличения внутреннего потенциала источника).

Схемы обозначения и вольт-амперные характеристики источников ЭДС

Теоретически на выводах у идеального источника напряжение не зависит от величины тока нагрузки и является постоянной величиной. Однако, это условная абстракция, которая не может быть осуществлена на практике. У реального источника при увеличении тока нагрузки значение напряжения на зажимах всегда уменьшается.

На графике видно, что ЭДС Е состоит из суммы падений напряжения на внутреннем сопротивлении источника и нагрузке.

В действительности источниками напряжения работают различные химические и гальванические элементы, аккумуляторные батареи, электрические сети. Их разделяют на источники:

постоянного и переменного напряжения;

управляемые напряжением или током.

Ими называют двухполюсники, создающий ток, который является строго постоянной величиной и никак не зависит от значения сопротивления на подключенной нагрузке, а внутреннее сопротивление его приближается к бесконечности. Это тоже теоретическое допущение, которое на практике не может быть достигнуто.

Схемы обозначения и вольт-амперная характеристика источника тока

Для идеального источника тока напряжение на его клеммах и мощность зависят только от сопротивления подключенной внешней схемы. При этом с увеличением сопротивления они возрастают.

Реальный источник тока отличается от идеального значением внутреннего сопротивления.

Примерами источника тока могут служить:

Вторичные обмотки трансформаторов тока, подключенных в первичную схему нагрузки своей силовой обмоткой. Все вторичные цепи работают в режиме надежного шунтирования. Размыкать их нельзя — иначе возникнут перенапряжения в схеме.

Идеальные и реальные источники э.д.с. и тока, их вольтамперные характеристики.

Источник ЭДС это активный элемент цепи, который имеет два вывода. Напряжение на этих выводах не зависит от сопротивления цепи, в которую он включен. То есть независимо от того какой ток будет создавать источник ЭДС в цепи напряжение на его выводах не изменится. Считается, что внутри источника ЭДС отсутствуют пассивные элементы, такие как активное сопротивление, индуктивность и емкость. То есть можно сказать, что внутренне сопротивление источника ЭДС равно нулю.

Идеальный источник ЭДС в природе не существует. И в правду трудно себе представить такой источник. В котором при замыкании его выводов между собой, нулевым сопротивлением, возникнет бесконечно большой ток. Это видно из закона Ома. I=UR при R=0 получим I=U/0.

В реальных же источниках ЭДС всегда присутствует внутренне сопротивление. Таким образом, при замыкании выводов между собой падение напряжения на внутреннем сопротивлении уравновешивает ЭДС источника. Следовательно, ток короткого замыкания будет иметь какую-то конечную величину.

У идеального источника тока, величина тока не зависит от величины напряжения на зажимах (рис.2).

I = const .

Очевидно, что ток короткого замыкания у этого источника всегда равен Iк, а его напряжение холостого хода равно бесконечности (Uхх = ∞). Поскольку ток у идеального источника тока неизменен (ΔI = 0), то он имеет внутреннее сопротивление, равное бесконечности.

При положительном напряжении и токе источник отдаёт энергию с электрическую цепь и работает в режиме генератора (Г). При обратном направлении напряжения – источник принимает энергию из цепи и работает в режиме приёмника (П).

Применение законов Кирхгофа для расчета линейных электрических цепей постоянного тока.

Последовательное соединение сопротивлений.

3.Взаимные преобразования звезды и треугольника резистивных элементов в линейных электрических цепях постоянного тока.

Расчет линейной электрической цепи постоянного тока методом двух узлов.

Одним из распространенных методов расчета электрических цепей является метод двух узлов. Этот метод применяется в случае, когда в цепи всего два узла.

Алгоритм действий таков:

1 — Потенциал одного из узлов принимается равным нулю

2 — Составляется узловое уравнение для другого узла

3 — Определяется напряжение между узлами

4 — По закону Ома, находятся токи в ветвях

Действующее значение синусоидально изменяющихся электрических величин

Идеальные и реальные источники э.д.с. и тока, их вольтамперные характеристики.

Источник ЭДС это активный элемент цепи, который имеет два вывода. Напряжение на этих выводах не зависит от сопротивления цепи, в которую он включен. То есть независимо от того какой ток будет создавать источник ЭДС в цепи напряжение на его выводах не изменится. Считается, что внутри источника ЭДС отсутствуют пассивные элементы, такие как активное сопротивление, индуктивность и емкость. То есть можно сказать, что внутренне сопротивление источника ЭДС равно нулю.

Идеальный источник ЭДС в природе не существует. И в правду трудно себе представить такой источник. В котором при замыкании его выводов между собой, нулевым сопротивлением, возникнет бесконечно большой ток. Это видно из закона Ома. I=UR при R=0 получим I=U/0.

В реальных же источниках ЭДС всегда присутствует внутренне сопротивление. Таким образом, при замыкании выводов между собой падение напряжения на внутреннем сопротивлении уравновешивает ЭДС источника. Следовательно, ток короткого замыкания будет иметь какую-то конечную величину.

У идеального источника тока, величина тока не зависит от величины напряжения на зажимах (рис.2).

I = const .

Очевидно, что ток короткого замыкания у этого источника всегда равен Iк, а его напряжение холостого хода равно бесконечности (Uхх = ∞). Поскольку ток у идеального источника тока неизменен (ΔI = 0), то он имеет внутреннее сопротивление, равное бесконечности.

При положительном напряжении и токе источник отдаёт энергию с электрическую цепь и работает в режиме генератора (Г). При обратном направлении напряжения – источник принимает энергию из цепи и работает в режиме приёмника (П).

Источник ЭДС и источник тока

ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ЦЕПИ

1. ЛИНЕЙНЫЕ ЦЕПИ ПОСТОЯННОГО ТОКА

Общие свойства

Постоянный ток широко используется во многих отраслях техники. Его при­ме­няют в устройствах связи, приборах, электрооборудовании мобильных аг­ре­гатов и др.

Совокупность источников, приемников электрической энергии и соединяю­щих их проводов называют электрической цепью.

Источниками электрической энергии служат устройства, в которых происхо­дит преобразование различных видов энергии в электрическую. По виду преобра­зуемой энергии источники электрической энергии могут быть разделены на хими­ческие и физические. Химическими источниками электрической энергии принято называть устройства, вырабатывающие энергию за счет окислительно-восстанови­тельного процесса между химическими реагентами. К химическим источникам от­носятся первичные (гальванические элементы и батареи), вторич­ные (аккумуля­торы и аккумуляторные батареи) и резервные (при хранении элек­тролит никогда гальванически не связан с электродами), а также электрохимиче­ские генераторы (топливные элементы).

Читайте так же:
Автоматический выключатель без теплового расцепителя иэк

Физическими источниками электрической энергии называют устройства, пре­образующие энергию механическую, тепловую, электромагнитную, световую энергию, энергию радиационного излучения, ядерного распада в электрическую. К физическим источникам относятся электромашинные генераторы (турбо-, гидро- и дизель-генераторы), термоэлектрические генераторы, термоэмиссион­ные преобра­зователи, МГД-генераторы, а также генераторы, преобразующие энергию солнеч­ного излучения и атомного распада.

Приемники электрической энергии (электродвигатели, электрические печи, нагревательные приборы, лампы накаливания, резисторы и др.) преобра­зуют электрическую энергию в другие виды энергии.

В электрической цепи источники и приемники соединяют проводами, кото­рые обеспечивают передачу электрической энергии от источников к прием­никам.

Электрические цепи содержат:

а) коммутационную аппаратуру для включения и отключения электриче­ского оборудования и устройств (переключатели, выключатели и др.);

б) контрольно-измерительные приборы (амперметры, вольтметры и др.);

в) аппаратуру защиты (плавкие предохранители, автоматы и др.).

Рассмотрим простейшую электрическую цепь, состоящую из аккумулятора, фары автомобиля, выключателя, амперметра и соединительных проводов (рис. 1.1 а). Графическое изображение электрической цепи, в которой реальные элементы представлены их условными обозначениями (рис. 1.1 б), называется электриче­ской схемой.

Для упрощения изображения электрической цепи каждое электротехниче­ское устройство заменяют (по ГОСТ) его условным обозначением.

На рис. 1.2 приведены условные обозначения источников и приемников постоянного тока: гальванического элемента (аккумулятора) (рис. 1.2 а), генера­тора постоянного тока (рис. 1.2 б), термопары (рис. 1.2 в), резистора (рис. 1.2 г), лампы накаливания (рис. 1.2 д), электрической печи (рис. 1.2 е).

Условные обозначения некоторых измерительных приборов и коммутирую­щих устройств представлены на рис. 1.3: амперметра (рис. 1.3 а), вольтметра (рис. 1.3 б), выключателя (рис. 1.3 в), предохранителя (рис. 1.3 г).

Чтобы облегчить изучение процессов в электрической цепи, ее заменяют расчетной схемой, в которой все элементы или некоторые из них

представлены так называемой схемой замещения. Схема замещения состоит из совокупности различных идеализи­рованных элементов, выбранных так, чтобы можно было описать физические процессы в реальном устройстве. В схемах замещения источники электри­ческой энергии, резисторы, индуктив­ные катушки и конденсаторы считаются элементами с сосредоточенными па­раметрами.

Схемы замещения различных электротехнических устройств будут под­робно рассмотрены в следующих параграфах.

Электрические цепи бывают неразветвленные и разветвленные. Если во всех участках цепи ток один и тот же, она называется неразветвленной (рис. 1.4 а). В разветвленной цепи (рис. 1.4 б) в каждой ветви протекает свой ток.

Геометрическая конфигурация схемы характеризуется такими понятиями, как ветвь, узел, контур. Ветвь

– участок электрической цепи, вдоль которого про­текает один и тот же ток.
Узел
– место соединения ветвей электрической цепи (не менее трех).
Контур
– любой замкнутый путь, образованный ветвями и узлами. Цепь, представленная на рис. 1.4 б имеет три ветви и два узла.

1.2. Электрический ток. Плотность тока. Электрическое напряжение

Направленное движение свободных заряженных частиц в проводнике под действием электрического поля называется электрическим током. Электриче­ский ток является скалярной величиной, которая равна пределу отношению за­ряда к промежутку времени, когда последний стремится к нулю:

Электрический ток, неизменный по направлению и величине, называется постоянным током.

В проводниках первого рода (металлы) ток образуется свободными электро­нами, поэтому электропроводность их называется электронной. В про­водниках второго рода (расплавленные соли, растворы кислот, щелочей, солей) носителями тока, заряженными частицами, являются ионы.

Значение постоянного тока определяется количеством электричества или зарядом Q

, проходящим через поперечное сечение проводника в 1
с
:

Размерность тока – ампер (А

). 1
А
– неизменный ток, который, проходя по двум параллельным проводникам бесконечной длины и ничтожно малого круг­лого сечения, расположенным на расстоянии 1
м
один от другого в вакууме, вы­звал бы между этими проводниками силу, равную
Н
на каждый метр длины.

Электротехника часть 3 электрические цепи

Всем доброго времени суток. В прошлой статье я рассказал о таких понятиях, как электрический ток, напряжение, сопротивление и основополагающем законе постоянного тока – законе Ома. Но этого, несомненно, мало для полного понимания процессов и возникающих закономерностей при функционировании электронных схем. В дальнейших статьях я постепенно буду формировать целостную картину такой интересной области техники как электроника.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Составные части электрических цепей

Как известно, для того, чтобы электрический ток в проводниках существовал длительное время необходимо, во-первых, существование разности потенциалов или напряжения, а во-вторых, восполнение необходимого количества разноимённых зарядов для возникновения этой разности потенциалов. Данным условиям соответствует некоторая совокупность элементов называемая электрической цепью.

Таким образом, электрической цепью называется совокупность устройств и объектов, которые образуют путь для электрического тока и электромагнитные процессы, в которых могут быть описаны с помощью понятий ЭДС, напряжения и электрического тока. Кроме того, для протекания электрического тока необходима замкнутая электрическая цепь. В общем случае электрическая цепь состоит из источника электрической энергии, приемника электрической энергии, соединительных проводов, а также вспомогательных элементов, выполняющих разнообразные функции.

Источником электрической энергии является устройство, которое выполняет преобразование неэлектрической энергии в электрическую. Например, аккумуляторы осуществляют преобразование энергии химических реакций в электрическую энергию, а генераторы – преобразование механической энергии. Таким образом, как известно из предыдущей статьи источники энергии называют также источниками ЭДС.

Приёмником электрической энергии, также называемые нагрузками является устройство, в котором выполняется действие противоположное источнику энергии, то есть электрическая энергия преобразуется в неэлектрическую. Например, в лампочке электрическая энергия преобразуется в световую и тепловую энергию, а в электродвигателе – в механическую энергию.

К вспомогательным устройствам относятся различные коммутирующие, распределительные и измерительные приборы и объекты.

Электрические цепи изображают на чертежах в виде принципиальных электрических схем, где каждому элементу электрической цепи соответствует свой графический элемент. Принципиальные схемы показывают назначение каждого элемента цепи, а также его взаимодействие с остальными элементами, однако при расчётах они не очень удобны. Поэтому при расчётах пользуются так называемыми схемами замещения, которые также как и принципиальные схемы изображаются с помощью графических элементов, однако элементы схем замещения выбираются так, чтобы с необходимым приближением описать работу электрической цепи. Пример изображения принципиальных электрических схем и схем замещения показано ниже

Принципиальная и схема замещения

Принципиальная схема (слева) и схема её замещения (справа).

Схемы замещения состоят из следующих элементов: контур, ветвь и узел. Ветвь – это один элемент либо последовательное соединение нескольких элементов. Узел – место соединения трёх и более ветвей. Контур – замкнутый путь, проходящий по ветвям так, чтобы ни один узел и ни одна ветвь не встречались больше одного раза.

Читайте так же:
Постоянный ток формулы количество теплоты

Таким образом, зная параметры всех элементов схемы замещения, возможно при помощи законов электротехники определить электрическое состояние всей электрической цепи, то есть рассчитать режим её работы.

Источник ЭДС и источник тока

При анализе электрических цепей, часто используют понятие идеального элемента, то есть такого элемента, в котором сосредоточен только один параметр, в отличие от реального элемента, в котором кроме одного основного параметра имеют место быть паразитные параметры. Например, резистор можно представить в виде идеального сопротивления, однако в реальном резисторе присутствует как емкость (например, между выводами), так и индуктивность (в проволочном резисторе, где используется намотанная на керамический каркас проволока). То есть идеальные элементы используются для упрощения анализа электрической цепи.

Источники энергии в электрических цепях при анализе схем также упрощают, кроме того их делят на два типа: источники ЭДС и источники тока. Рассмотрим каждый из них в отдельности.

Идеальный источник ЭДС характеризуется тем, что напряжение на его выводах не зависит от протекающего через него тока, то есть внутри такого источника ЭДС отсутствуют пассивные элементы (сопротивление R, индуктивность L, емкость С), и поэтому падение напряжения на пассивных элементах отсутствует.

Таким образом, напряжение на его выводах равно ЭДС, а ток теоретически не имеет ограничения, то есть если замкнуть его выходные зажимы, то электрический ток должен быть бесконечно большим. Поэтому идеальный источник ЭДС можно рассматривать, как источник бесконечной мощности. Однако в реальности ток имеет конечное значение, так как падение напряжения на внутреннем сопротивлении при коротком замыкании выводов уравновешивает ЭДС источника. Таким образом, реальный источник ЭДС можно изобразить в виде идеального источника ЭДС с последовательно подключённым пассивным элементом, который ограничивает мощность, отдаваемую во внешнюю цепь.

Источники ЭДС

Источники ЭДС: идеальный (слева) и реальный (справа).

Идеальный источник тока характеризуется тем, что ток протекающий через него не зависит от напряжения, которое присутствует на его выводах, то есть сопротивление внутри источника тока бесконечно велико и поэтому параметры внешних элементов электрической цепи не влияют на ток протекающий через источник.

Таким образом, при бесконечном увеличении сопротивления также увеличивается напряжение на выводах идеального источника тока, поэтому и мощность растёт до бесконечности, то есть получается источник бесконечной мощности. Так как в реальности мощность всё же конечна, то реальный источник тока изображается, как идеальный источник тока с параллельно подключенным пассивным компонентом, характеризующим внутренние параметры источника тока, и ограничивает мощность, отдаваемую во внешнюю цепь.

Источники тока

Источники тока: идеальный (слева) и реальный (справа).

Закон Ома для полной цепи

В предыдущей статье я рассказал о законе Ома, который устанавливает зависимость между напряжением и током, протекающим через участок цепи. Однако при попытке его применить ко всей цепи, содержащей кроме сопротивления ещё и источник напряжения, приводит к неверным результатам, так как реальный источник напряжения, как мы знаем, имеет некоторое внутреннее сопротивление.

Закон Ома для полной цепи

Закон Ома для полной цепи.

Поэтому полное сопротивление цепи является суммой внутреннего сопротивления источника энергии RВН (обычно небольшого) и внешнего сопротивления нагрузки RН (практически всегда значительно большего, чем RВН), поэтому для полной цепи закон Ома будет иметь следующий вид

1701201701

Проанализировав данное выражение можно прийти к следующим практически выводам:

При подключении к источнику питания нагрузки, напряжение источника питания меньше его ЭДС, так как на внутреннем сопротивлении RВН источника питания происходит падение некоторого напряжения UВН

1701201702

Следовательно, при отключенной нагрузке напряжение источника питания будет равно ЭДС. Данное приложение используется для измерения ЭДС источников питания.

1701201703

измерение внутреннего сопротивления

Схема для измерения источника энергии.

В начале проводят замер ЭДС источника питания Е, путём размыкая ключа S1, затем замыкая ключ S1 замеряют протекающий по цепи ток I и напряжение источника питания под нагрузкой UH. Таким образом, вычисляют падение напряжения на внутреннем сопротивлении источника питания UВН. Тогда, величина внутреннего сопротивления RВН будет вычислена, как отношение внутреннего падения напряжения к протекающему в цепи току

1701201704

Например, при разомкнутом ключе S1 напряжение на выходе источника питания составило U = E = 1,5 В. При замыкании ключа S1 ток составил I = 0,18 А, а напряжение составило UH = 1,42 В. Тогда внутренне сопротивление RВН источника питания составит

1701201705

КПД источника энергии

Кроме внутреннего сопротивления RВН и ЭДС Е источник энергии характеризуется также коэффициентом полезного действия КПД при работе на конкретную нагрузку RН.

Коэффициентом полезного действия КПД источника энергии называется отношение мощности приёмника энергии (мощности нагрузки) или полезной мощности РН к мощности источника энергии Р. Как известно мощность выражается произведением напряжения на ток протекающий через источник энергии, то есть по отношению к источнику энергии это будет

1701201706

где PBH – мощность потерь внутри источника энергии.

Таким образом, КПД будет равен

1701201707

Из вышесказанного возникает резонный вопрос, при каком КПД в нагрузку отдается наибольшая мощность? Можно было бы предположить, что максимальная мощность в нагрузку поступает при КПД η = 1 или 100 %, однако в этом случае напряжение U на источнике питания равняется ЭДС Е, то есть ток в цепи равен нулю I = 0, а значит и мощность на нагрузке также равна нулю Р = 0

1701201708

Данный режим называется режимом холостого хода.

Другой случай, когда КПД η = 0, в этом случае ток имеет максимальное значение и фактически ограничен лишь внутренним сопротивлением источника питания I = E/RBH. Следовательно, напряжение нагрузки равно нулю UH = 0 и мощность в нагрузке также нулевая Р = 0

1701201709

Данный режим называется режимом короткого замыкания.

Не вдаваясь в длинные расчёты сказу сразу, что максимальная мощность на нагрузке выделяется при КПД η = 0,5 или 50 %, в этом случае напряжение на нагрузке равно падению напряжения на внутреннем сопротивлении источника питания UH = UBH, то есть сопротивление нагрузки равно внутреннему сопротивлению источника питания.

1701201710

Данный режим называется режимом согласованной нагрузки.

В данном режиме работает большинство слаботочных устройств автоматики, телемеханики и электросвязи, где низкий КПД не влечёт значительных потерь энергии. Однако в мощных устройствах стараются проектировать устройства так чтобы КПД η = 0,95…0,98.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector