Azotirovanie.ru

Инженерные системы и решения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Выпрямляющие свойства p-n перехода

Выпрямляющие свойства p-n перехода

В полупроводниковых материалах валентные электроны сильно связаны с ядрами атомов и при создании кристаллической решетки участвуют в образовании химических связей. Рассмотрим условия появления носителей заряда в полупроводниках на примере классического полупроводника — кремния.

Собственный полупроводник

Рассмотрим кристалл чистого кремния, не содержащего никаких примесей. Каждый атом кремния имеет 4 валентных электрона. При образовании кристаллической решетки валентные

Рис.15.1. Двумерное представления расположения связей в кремнии при низкой (а) и высокой (б) температурах

электроны, представленные на рис.15.1,а в виде черных точек, обеспечивают ковалентную связь. При температурах, близких к абсолютному нулю, все электроны находятся в связанном состоянии, и свободных носителей заряда в полупроводнике нет. При подведении энергии (например, за счет теплового нагрева) появляется возможность разрыва ковалентной связи, в результате чего электрон становится свободным (рис.15.1,б). При уходе электрона ковалентная связь оказывается незавершенной (светлый кружок на рисунке).

Примесной полупроводник

Изменить концентрацию электронов или дырок в полупроводнике можно его легированием (введением примесей). Допустим, что часть атомов кремния замещена атомами пятивалентного мышьяка (рис.15.2,а).

Рис. 15.2. Схематическое изображение кристаллической решетки примесного полупроводника n- (а) и p-типа (б) проводимости

Четыре валентных электрона атома мышьяка участвуют в образовании ковалентной связи, пятый электрон оказывается «лишним». Он слабо связан с атомами мышьяка. При низких температурах он локализован около своего родного атома, но при повышении температуры способен стать свободным. В этом случае каждый введенный атом мышьяка вносит в кристаллическую решетку свободный электрон. Концентрация электронов будет определяться концентрацией введенной примеси. В таком полупроводнике выполняется условие

. (15.1)

В силу доминирующей роли электронов такие полупроводники называются полупроводниками n-типа проводимости или полупроводниками с электронной проводимостью.

Введем в кристаллическую решетку кремния атомы элемента 3-й группы периодической системы Менделеева (например, алюминий). Поскольку валентность алюминия равна трем, то одна связь атома кремния будет незавершенной (рис. 15.2,б). Следовательно, каждый введенный в кремний элемент 3-й группы будет вносить один положительный заряд – дырку. В таком материале будет выполняться условие

(15.2)

и электропроводность кристалла будет дырочной. Рассмотренные полупроводники называются полупроводниками p-типа проводимости.

Важно отметить, что в примесном полупроводнике существуют основные и неосновные носители заряда. В материале n-типа основными носителями являются электроны, неосновными – дырки. В полупроводниках p-типа основными носителями являются дырки, неосновными – электроны.

Выпрямляющие свойства p-n перехода

Контакт двух полупроводников с разным типом проводимости обладает выпрямляющим действием. Это означает, что сопротивление такого контакта зависит от направления тока: в одном направлении оно велико, в другом – мало. Рассмотрим выпрямляющее действие p-n перехода. Приведем в плотный контакт два материала с дырочной и электронной проводимостью (рис.15.3). Различие в концентрациях однотипных носителей заряда приведет к возникновению диффузионного потока электронов из n-области в p-область, а дырок из p-области в n. При этом приконтактная область дырочного полупроводника будет заряжаться отрицательно, а электронного – положительно. Возникает двойной электрический слой разделенных зарядов, которому будет соответствовать внутреннее контактное электрическое поле, направленное от плюса к минусу. Иными словами, на границе p и n областей возникает внутренняя контактная разность потенциалов UK, затрудняющая процессы перехода основных носителей заряда.

Рис.15.3. Образование контактной разности потенциалов

Подадим на p-n переход внешнее напряжение. Если положительный потенциал приходится на p-область, а отрицательный на n— область (рис.15.4), то такое включение называется прямым и ему соответствует протекание большого тока через p-n переход.

Рис.15.4. P-n переход при прямом смещении

Это обусловлено тем, что внешнее электрическое поле будет ослаблять действие внутреннего электрического поля. Величина потенциального барьера для основных носителей заряда по обе стороны от p-n перехода понизится, уменьшится ширина двойного электрического слоя, и, увлекаемые внешним электрическим полем, электроны n-области и дырки p-области будут двигаться через границу через невысокий потенциальный барьер. Таким образом, протекание большого прямого тока обусловлено движением основных носителей заряда.

Если сменить направление внешнего электрического поля, подавая положительный потенциал на n-область, а отрицательный на p (рис.15.5), то такое смещение называется обратным и характеризуется протеканием малых токов.

Рис.15.5. Обратное включение p-n перехода

Зависимость силы тока I от внешнего напряжения U, называемая вольтамперной характеристикой (ВАХ), для p-n перехода описывается уравнением:

(15.3)

где знак «+» относится к прямому направлению, знак «-» — к обратному. При прямых смещениях зависимость имеет экспоненциальный характер, поскольку уже при небольших напряжениях единицей в квадратных скобках можно пренебречь. При больших обратных смещениях ток выходит на постоянный уровень, называемый током насыщения IS.

Вольтамперная характеристика реальных промышленных полупроводниковых диодов изображена на рис.15.6 и имеет небольшие отличия от зависимости, описываемой ф.(15.3).

Читайте так же:
Тепловое действие электрического тока закон джоуля ленца формула

Рис.15.6. ВАХ полупроводникового диода

Эти отличия относятся к области прямых смещений, когда начальный экспоненциальный участок переходит в строгую линейную зависимость. Линейная зависимость обусловлена тем, что при больших прямых смещениях потенциальный барьер для основных носителей полностью исчезает и величину протекающего тока уже определяет электрическое сопротивление p- и n- областей, называемых базовой областью. Сопротивление базовой области RБ определяется по тангенсу угла наклона линейного участка ВАХ:

(15.4)

Прямое и обратное включение перехода

При использовании (p)-(n)-перехода в реальных полупроводниковых приборах к нему может быть приложено внешнее напряжение. Величина и полярность этого напряжения определяют поведение перехода и проходящий через него электрической ток. Если положительный полюс источника питания подключается к (p)-области, а отрицательный ­— к (n)-области, то включение называют прямым включением. При изменении указанной полярности включение (p)‑(n)‑перехода называют обратным включением.

При прямом включении (p)-(n)-перехода внешнее напряжение создает в переходе поле, которое противоположно по направлению внутреннему диффузионному электрическому полю. Напряженность результирующего поля падает, что сопровождается сужением запирающего слоя. В результате этого большое количество основных носителей зарядов получает возможность диффузионно переходить в соседнюю область (ток дрейфа при этом не изменяется, поскольку он зависит от количества неосновных носителей, появляющихся на границах перехода), т.е. через переход будет протекать результирующий ток, определяемый в основном диффузионной составляющей. Диффузионный ток зависит от высоты потенциального барьера и по мере его снижения увеличивается экспоненциально.

Повышенная диффузия носителей зарядов через переход приводит к повышению концентрации дырок в области (n)-типа и электронов в области (p)-типа. Такое повышение концентрации неосновных носителей вследствие влияния внешнего напряжения, приложенного к переходу, называется инжекцией неосновных носителей. Неравновесные неосновные носители диффундируют вглубь полупроводника и нарушают его электронейтральность. Восстановление нейтрального состояния полупроводника происходит за счет поступления носителей зарядов от внешнего источника. Это является причиной возникновения тока во внешней цепи, называемого прямым током.

При включении (p)-(n)-перехода в обратном направлении внешнее обратное напряжение создает электрическое поле, совпадающее по направлению с диффузионным, что приводит к росту потенциального барьера и увеличению ширины запирающего слоя. Все это уменьшает диффузионные токи основных носителей. Для неосновных носителе поле в (p)-(n)-переходе остается ускоряющим, и поэтому дрейфовый ток не изменяется.

Таким образом, через переход будет протекать результирующий ток, определяемый в основном током дрейфа неосновных носителей. Поскольку количество дрейфующих неосновных носителей не зависит от приложенного напряжения (оно влияет только на их скорость), то при увеличении обратного напряжения ток через переход стремиться к предельному значению (I_S) , которое называется током насыщения. Чем больше концентрация примесей доноров и акцепторов, тем меньше ток насыщения, а с увеличением температуры ток насыщения растет по экспоненциальному закону.

Pn-переход

p-n-перехо́д или электронно-дырочный переход — область соприкосновения двух полупроводников с разными типами проводимости — дырочной (p, от англ.  positive  — положительная) и электронной (n, от англ.  negative  — отрицательная). Электрические процессы в p-n-переходах являются основой работы полупроводниковых приборов с нелинейной вольт-амперной характеристикой (диодов, транзисторов и других Перейти к разделу «#Применение» ).

Содержание

Области пространственного заряда

В полупроводнике p-типа, который получается посредством акцепторной примеси, концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа, который получается посредством донорной примеси, концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — основные носители заряда (электроны и дырки) хаотично перетекают из той области, где их больше, в ту область, где их меньше, и рекомбинируют друг с другом. Как следствие, вблизи границы между областями практически не будет свободных (подвижных) основных носителей заряда, но останутся ионы примесей с некомпенсированными зарядами [1] . Область в полупроводнике p-типа, которая примыкает к границе, получает при этом отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получает положительный заряд, приносимый дырками (точнее, теряет уносимый электронами отрицательный заряд).

Таким образом, на границе полупроводников образуются два слоя с пространственными зарядами противоположного знака, порождающие в переходе электрическое поле. Это поле вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие, и изменение пространственных зарядов прекращается. Обеднённые области с неподвижными пространственными зарядами и называют p-n-переходом [2] .

Выпрямительные свойства

Если к слоям полупроводника приложено внешнее напряжение так, что создаваемое им электрическое поле направлено противоположно существующему в переходе полю, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением (на область p-типа подан положительный потенциал относительно области n-типа).

Читайте так же:
Расчет тепловых импульсов от токов кз

Если внешнее напряжение приложить так, чтобы созданное им поле было одного направления с полем в переходе, то это приведёт лишь к увеличению толщины слоёв пространственного заряда. Диффузионный ток уменьшится настолько, что преобладающим станет малый дрейфовый ток. Такое подключение напряжения к p-n-переходу называется обратным смещением (или запорным смещением), а протекающий при этом через переход суммарный ток, который определяется в основном тепловой или фотонной генерацией пар электрон-дырка, называется обратным током.

Ёмкость

Ёмкость p-n-перехода — это ёмкости объёмных зарядов, накопленных в полупроводниках на p-n-переходе и за его пределами. Ёмкость p-n-перехода нелинейна — она зависит от полярности и значения внешнего напряжения, приложенного к переходу. Различают два вида ёмкостей p-n-перехода: барьерная и диффузионная [3] .

Барьерная ёмкость

Барьерная (или зарядовая) ёмкость связана с изменением потенциального барьера в переходе и возникает при обратном смещении. Она эквивалентна ёмкости плоского конденсатора, в котором слоем диэлектрика служит запирающий слой, а обкладками — p и n-области перехода. Барьерная ёмкость зависит от площади перехода и относительной диэлектрической проницаемости полупроводника.

Диффузионная ёмкость

Диффузионная ёмкость обусловлена накоплением в области неосновных для неё носителей (электронов в p-области и дырок в n-области) при прямом смещении. Диффузионная ёмкость увеличивается с ростом прямого напряжения.

Воздействие радиации

Взаимодействие радиационного излучения с веществом — сложное явление. Условно принято рассматривать две стадии этого процесса: первичную и вторичную.

Первичные или прямые эффекты состоят в смещении электронов (ионизации), смещении атомов из узлов решётки, в возбуждении атомов или электронов без смещения и в ядерных превращениях вследствие непосредственного взаимодействия атомов вещества (мишени) с потоком частиц.

Вторичные эффекты состоят в дальнейшем возбуждении и нарушении структуры выбитыми электронами и атомами.

Наибольшего внимания заслуживают возбуждение электронов с образованием электронно-дырочных пар и процессы смещения атомов кристалла из узлов решетки, так как это приводит к образованию дефектов кристаллической структуры. Если электронно-дырочные пары образуются в области пространственного заряда, это приводит к возникновению тока, на противоположных контактах полупроводниковой структуры. Этот эффект используется для создания беттавольтаических источников питания со сверхдолгим сроком службы (десятки лет).

Облучение заряженными частицами большой энергии всегда приводит к первичной ионизации и, в зависимости от условий, к первичному смещению атомов. При передаче высоких энергий электронам решетки образуются дельта-излучение, высокоэнергетические электроны, которые рассеиваются от ионного трека, а также фотоны и рентгеновские кванты. При передаче атомам кристаллической решетки меньших энергий происходит возбуждение электронов и их переход в более высокоэнергетическую зону, в которой электроны термолизируют энергию путем испускания фотонов и фононов (нагрев) различных энергий. Наиболее общим эффектом рассеяния электронов и фотонов является эффект Комптона.

Методы формирования

Вплавление примесей

При вплавлении монокристалл нагревают до температуры плавления примеси, после чего часть кристалла растворяется в расплаве примеси. При охлаждении происходит рекристаллизация монокристалла с материалом примеси. Такой переход называется сплавным.

Диффузия примесей

В основе технологии получения диффузионного перехода лежит метод фотолитографии. Для создания диффузного перехода на поверхность кристалла наносится фоторезист — фоточувствительное вещество, которое полимеризуется засвечиванием. Неполимеризованные области смываются, производится травление плёнки диоксида кремния, и в образовавшиеся окна производят диффузию примеси в пластину кремния. Такой переход называется планарным.

Эпитаксиальное наращивание

Сущность эпитаксиального наращивания состоит в разложении некоторых химических соединений с примесью легирующих веществ на кристалле. При этом образуется поверхностный слой, структура которого становится продолжением структуры исходного проводника. Такой переход называется эпитаксиальным [3] .

Полупроводники p и n типа, p-n переход

Внесение в полупроводник примесей существенно влияет на поведение электронов и энергоуровни спектра кристалла. Валентные электроны примесных атомов создают энергетические уровни в запрещенной зоне спектра. К примеру, если в решетке германия один атом замещен пятивалентным атомом фтора, то энергия дополнительного электрона станет меньше, чем энергия, которая соответствует нижней границе зоны проводимости. Энергетические уровни подобных примесных электронов находятся ниже дна зоны проводимости. Эти уровни заполненные электронами называют донорными. Для перевода электронов с донорных уровней в зону проводимости необходима энергия меньше, чем у чистого полупроводника. После того как электроны переброшены в зону проводимости с донорных уровней, говорят, что в полупроводнике появилась проводимость n-типа. Полупроводники с донорной примесью называют электронными (донорными) или полупроводниками n-типа (negative — отрицательный). Электроны в полупроводниках n — типа служат как основные носители заряда, дырки — неосновными. Энергетическая диаграмма такого полупроводника изображена на рис.1.

Полупроводники p типа

В полупроводнике, который содержит акцепторную примесь, электроны довольно легко переходят из валентной зоны на акцепторные уровни. В такой ситуации в валентной зоне появляются свободные дырки. Число дырок в данном случае существенно больше, чем свободных электронов, которые образовались при переходе из валентной зоны в зону проводимости. В данной ситуации дырки — основные носители заряда, электроны — неосновные. Проводимость полупроводника, который включает акцепторную примесь, носит дырочный характер, сам проводник при этом называется дырочным (акцепторным) или полупроводником p-типа (positive — положительный). Энергетическая диаграмма полупроводника p-типа приведена на рис.2.

Читайте так же:
Какую теплоту за 1 минуту выделяет ток 15 а

Готовые работы на аналогичную тему

p-n переход

p-n переход создают в естественном полупроводнике легированием донорными и акцепторными примесями по разные стороны от границы раздела. При этом область, в которую вводились донорные примеси становится n-областью с электронной проводимостью, область в которую ввели акцепторные примеси — p-областью с преимущественной дырочной проводимостью.

Так как в n- области концентрация электронов больше (в сравнении с концентрацией дырок), а в p- области наоборот, то электроны диффундируют из n- области, в p- область, а дырки в обратном направлении. В результате в n- области возникает положительный заряд, а в p- области отрицательный Появляющаяся таким образом, разность потенциалов и электрическое поле пытаются замедлить диффузию положительных и отрицательных зарядов. При некотором напряжении возникает равновесие. Так как заряд электрона меньше нуля, то рост потенциала ведет к уменьшению потенциальной энергии электронов и росту потенциальной энергии дырок. Как следствие роста потенциала n- области потенциальная энергия электронов в этой области уменьшается, а в p- области увеличивается. С потенциальной энергией дырок дело обстоит наоборот. Характер изменения электрического потенциала совпадает с характером изменения потенциальной энергии дырок.

Итак, возникает потенциальный барьер, который противостоит потоку диффузии электронов и дырок со стороны перехода с их большей концентрацией, то есть напору электронов со стороны n- области и напору дырок из p- области. Этот потенциальный барьер растет до величины, при которой появляющееся на переходе электрическое поле порождает такие токи из носителей заряда, которые полностью компенсируют диффузионные потоки. Так достигается стационарное состояние.

Электроны и дырки в зоне проводимости полупроводников имеют конечное время жизни. Дырки, которые попали из p- области в n- область диффундируют в ней в течение некоторого времени, а затем аннигилируются с электронами. Так же ведут себя электроны, которые попали из n- области в p- область. Следовательно, концентрация избыточных дырок в n- области и концентрация электронов в p- области уменьшается (по экспоненте) при удалении от границы перехода.

[Примечание] Обычно энергия Ферми p и n- областей полупроводников отличается примерно на 1эВ. Значит, разность потенциалов, которая появляется на переходе и выравнивает энергии Ферми по разные стороны перехода, имеет величину порядка 1В.

Электрический ток, через p-n переход

Допустим, что напряжение приложено так, что у n- области потенциал имеет знак минус, со стороны p- области — плюс. Потенциальный барьер в таком случае, для основных носителей тока уменьшатся. Следовательно, сила тока основных носителей растет. Сила тока неосновных носителей почти не изменяется, так как диффузионный ток определен концентрацией носителей заряда и не зависит от приложенной разности потенциалов.

Если внешнее напряжение приложено так, что у n- области потенциал больше нуля, а со стороны p- области меньше нуля, то для основных носителей тока потенциальные барьеры увеличиваются. Тогда ток основных носителей почти равен 0. Ток неосновных носителей не изменяется. Если ток в направлении от n- области к p-области не течет, то такое направление называют запорным. Обратное направление называют проходным.

Переход металл — полупроводник имеет способность пропускать ток в одном направлении и не пропускать в другом. Причем, полупроводник может быть любого типа. Это явление связано с тем, что любой полупроводник по отношению к металлу очень беден свободными электронами. В случае перехода металл — проводник, проходным направлением будет направление от полупроводника к металлу.

p-n переход действует как диод, так как имеет одностороннюю проводимость. Наиболее часто применяемыми материалами для создания p-n переходов служат германий и кремний. У германия концентрация основных носителей больше, чем у кремния, больше их подвижность. Из-за этого проводимость p-n переходов в германии в проходном направлении существенно больше, чем у кремния, но соответственно больше обратный ток. Кремний же можно использовать в широком спектре температур.

Задание: Вольт — амперная характеристика для p-n перехода в кремний изображена на рис. 3. p-n перехода для германия на рис. 4. Сравните их, объясните различия.

Вольтамперная характеристика p-n перехода показывает, переход имеет одностороннюю проводимость, а именно проводит ток в направлении из области p в область n. (Положительные значения напряжение U соответствуют изменению потенциала на переходе от p области к n области).

Читайте так же:
Проводит ли ток теплопроводная паста

Возможной причиной отличий вольтамперной характеристики кремния (рис.3) от вольт — амперной характеристики германия служит низкая концентрация неосновных носителей в кремнии. Получается при небольших приложенных напряжениях плотность тока (j) неосновных носителей очень мала и только при U=0,6B сила тока начинает расти по экспоненте (у германия это происходит при U=0 B).

Задание: Что такое туннельный эффект?

При большой концентрации атомов примеси в полупроводниках происходит расширение примесных уровней. Уровни перекрывают границу между зонами. Как результат — уровень Ферми попадает внутрь либо проводящей, либо валентной зоны. При отсутствии внешнего напряжения энергии Ферми по разные стороны перехода одинаковы. При сильном легировании переход становится узким, концентрация неосновных носителей мала.

Если приложить внешнее напряжение в проходном направлении, то появляется небольшой диодный ток. Но, так как по разные стороны перехода, который делится потенциальным барьером энергии носителей равны, возникает так называемый туннельный эффект Носители проходят через потенциальный барьер без изменения энергии. Из-за этого через потенциальный барьер течет значительный ток. При увеличении напряжения энергия электронов в n-области растет, в p —области уменьшатся, при этом область перекрытия примесных уровней становится меньше. Как следствие, уменьшается сила тока. (Максимум тока достигается, когда зоны перекрывают друг друга наибольшим образом). В тот момент, когда примесные зоны сдвигаются относительно друг друга настолько, что каждой из них на другой стороне перехода противостоит запрещенная зона, туннелированние прекращается. При этом сила тока через переход уменьшается. При высоких напряжениях зоны проводимости n и p областей оказываются на одном уровне, возникает обычный диодный ток. Сила тока снова растет. В интервале от первого максимума тока до следующего за ним минимума туннельный диод проявляет эффект отрицательного сопротивления, когда увеличение напряжения ведет к уменьшению силы тока. Рис.5 Вольт — амперная характеристика туннельного диода.

Полная вольт-амперная характеристика p-n-перехода

Полная вольт-амперная характеристика p-n-перехода приведена на рис. 22.

Рис. 22. Вольт-амперная характеристика p-n-перехода

При прямом включении p-n-перехода с повышением приложенного внешнего напряжения диффузионный ток увеличивается (см. выражение 18), т. к. уменьшившийся потенциальный барьер способны преодолеть основные носители заряда, обладающие меньшей энергией, в связи с чем возрастает прямой ток через p-n-переход.

В кремниевых диодах величина выше, чем в германиевых. Одинаковая величина внешнего напряжения создает меньшее снижение потенциального барьера, чем в германиевых диодах, и обусловливает меньший прямой ток при одинаковой площади p-n-перехода (рис. 23). Большая величина является одной из причин большего падения напряжения в кремниевых диодах (0,8…1,2 В) по сравнению с германиевыми диодами (0,3…0,6 В) при протекании тока в прямом направлении.

Рис. 23. ВАХ кремниевого и германиевого p-n-переходов при прямом включении

Экспоненциальный характер анодного тока на прямой ветви ВАХ определяется экспоненциальным характером зависимости граничных концентраций от приложенного напряжения. Диффундируя в глубь слоев, неравновесные электроны рекомбинируют с дырками p-слоя, а неравновесные дырки – с электронами n-слоя. В связи с этим концентрации неравновесных носителей заряда уменьшаются по экспоненциальному закону до значений равновесных концентраций.

При обратном включении p-n-перехода при небольших напряжениях увеличение обратного тока наблюдается за счет уменьшения диффузионной составляющей. При обратном напряжении, соответствующем точке 1 (рис. 22), и большем, основные носители заряда не способны преодолеть потенциальный барьер, в связи с чем диффузионный ток равен нулю. Этим объясняется отсутствием роста обратного тока при увеличении обратного напряжения. Обратный ток, создаваемый неосновными носителями заряда, зависит от их концентраций в слоях, а также от рабочей поверхности p-n-перехода. Этим объясняется тот факт, что в мощных диодах, имеющих большую площадь p-n-перехода, обратный ток больше, чем в маломощных. Поскольку концентрация неосновных носителей заряда является функцией температуры кристалла, обратный ток p-n-перехода также зависит от температуры. Увеличение обратного тока с ростом температуры подчиняется примерно экспоненциальному закону.

Как известно, концентрация неосновных носителей заряда уменьшается с ростом ширины запрещенной зоны на энергетической диаграмме полупроводника. Ширина запрещенной зоны в кремнии больше, чем в германии. В силу этого, обратный ток в кремниевых приборах на несколько порядков меньше, чем в германиевых. Вследствие этого, кремниевые приборы применимы при более высокой температуре и при более высоких обратных напряжениях.

Приведенной на рис. 22 ВАХ p-n-перехода соответствует ее запись в аналитическом виде:

При , согласно данному соотношению, . В случае приложения прямого напряжения единицей в выражении (21) можно пренебречь, и зависимость будет иметь экспоненциальный характер. В случае обратного напряжения можно не учитывать достаточно малую величину , и тогда .

Читайте так же:
Концевой выключатель нпо тепломаш

Полупроводниковые диоды

Полупроводниковый прибор с одним р-n-переходом, имеющий два омических вывода, называют полупроводниковым диодом (рис. 24). На практике наибольшее распространение получили диоды с неодинаковой концентрацией основных носителей заряда в областях. Типичными являются приборы, в которых p-область имеет большую концентрацию носителей заряда.

Рис. 24. Конструкция маломощных выпрямительных диодов:

1 – внешний вывод (анод); 2 – трубка; 3 – стеклянный изолятор; 4 – корпус;

5 – внутренний вывод анода; 6 – таблетка индия; 7 – кристалл германия;

8 – кристаллодержатель; 9 – внешний вывод (катод)

Важный параметр диода – его дифференциальное сопротивление:

Из выражения (21) в случае приложения прямого напряжения :

С ростом тока дифференциальное сопротивление p-n-перехода быстро уменьшается.

Пробой диода. При обратном напряжении диода свыше определенного критического значения наблюдается резкий рост обратного тока (рис. 25). Это явление называют пробоем диода. Все разновидности пробоя диода можно разделить на электрические и тепловые. Электрический пробой, в свою очередь, может быть лавинным или туннельным.

Лавинный пробой обусловлен лавинным размножением носителей в р-n-переходе в результате ударной ионизации атомов быстрыми носителями заряда. Он происходит следующим образом. Неосновные носители заряда, поступающие в р-n-переход при действии обратного напряжения, ускоряются полем и при движении в нем сталкиваются с атомами кристаллической решетки. При соответствующей напряженности электрического поля носители заряда приобретают энергию, достаточную для отрыва валентных электронов. При этом образуются дополнительные пары носителей заряда – электроны и дырки, которые, ускоряясь полем, при столкновении с атомами также создают дополнительные носители заряда. Описанный процесс носит лавинный характер (на ВАХ участок 2-3 рис. 25).

В основетуннельного пробоялежит непосредственно отрыв валентных электронов от атомов кристаллической решетки под действием сильного электрического поля. Образующиеся при этом дополнительные носители заряда (электроны и дырки) увеличивают обратный ток через р-n-переход. Туннельный пробой развивается в узких р-n-переходах, где при сравнительно небольшом обратном напряжении имеется высокая напряженность поля. Лавинный и туннельный пробои сопровождаются появлением почти вертикального участка 3-4 на обратной ветви вольтамперной характеристики (см. рис. 25).

Лавинный и туннельный пробои являются обратимыми, т. е. они не приводят к повреждению диода и при снижении напряжения его свойства сохраняются.

Длительный лавинный или туннельный пробой диода может вызвать тепловой пробой.

Рис. 25. ВАХ диода при превышении обратного напряжения предельного значения

Тепловой пробой возникает за счет интенсивной термогенерации носителей в р-n-переходе при недопустимом повышении температуры. Процесс развивается лавинообразно и ввиду неоднородности р-n-перехода обычно носит локальный характер. Лавинообразное развитие теплового пробоя обуславливается тем, что увеличение числа носителей заряда за счет повышения температуры вызывает увеличение обратного тока и, следовательно, еще больший разогрев участка р-n-перехода. Процесс заканчивается расплавлением этого участка и выходом прибора из строя. Тепловой пробой возникает, как правило, вследствие протекания большого обратного тока при лавинном или туннельном пробое или ухудшении условий теплоотвода. В последнем случае он может произойти при меньшем напряжении , минуя стадии лавинного или туннельного пробоя.

Нормальная работа диода в качестве элемента односторонней проводимостью возможна лишь в режимах, когда обратное напряжение не превышает пробивного значения . Значение допустимого обратного напряжения устанавливается с учетом исключения возможности электрического пробоя и составляет (0,5…0,8) .

Емкости диода. Принято говорить об общей емкости диода , измеренной между выводами диода при заданном напряжении смещения и частоте. Общая емкость диода равна сумме барьерной емкости , диффузионной емкости и емкости корпуса прибора .

Барьерная (зарядная) емкость обусловлена нескомпенсированным объемным зарядом ионов примесей, сосредоточенным по обе стороны от границы р-n-перехода.

Модельным аналогом барьерной емкости может служить емкость плоского конденсатора, обкладками которого являются р- и n-области, а диэлектриком служит р-n-переход, практически не имеющий подвижных зарядов. Значение барьерной емкости колеблется от десятков до сотен пикофарад; изменение этой емкости при изменении напряжения может достигать десятикратной величины. Поскольку величина барьерной емкости зависит от приложенного напряжения, то диод (p-n-переход) можно использовать в качестве конденсатора переменной емкости.

Диффузионная емкость. Изменение величины объемного заряда неравновесных электронов и дырок, вызванное изменением прямого тока, можно рассматривать как следствие наличия так называемой диффузионной емкости, которая включена параллельно барьерной емкости.

Значения диффузионной емкости могут иметь порядок от сотен до тысяч пикофарад. Поэтому при прямом напряжении емкость р-n-перехода определяется преимущественно диффузионной емкостью, а при обратном напряжении – барьерной емкостью.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector