Azotirovanie.ru

Инженерные системы и решения
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для какого оборудования допускается включение токовых цепей счетчика совместно с цепями защиты при использовании промежуточных трансформаторов тока класса точности не более 0,5

Для какого оборудования допускается включение токовых цепей счетчика совместно с цепями защиты при использовании промежуточных трансформаторов тока класса точности не более 0,5?

ПУЭ п. 1.5.21. Для обходных выключателей 110 и 220 кВ со встроенными трансформаторами тока допускается снижение класса точности этих трансформаторов тока на одну ступень по отношению к указанному в 1.5.16.

Для обходного выключателя 110 кВ и шиносоединительного (междусекционного) выключателя 110 кВ, используемого в качестве обходного, с отдельно стоящими трансформаторами тока (имеющими не более трех вторичных обмоток) допускается включение токовых цепей счетчика совместно с цепями защиты при использовании промежуточных трансформаторов тока класса точности не более 0,5; при этом допускается снижение класса точности трансформаторов тока на одну ступень.

Какие трансформаторы напряжения могут применяться для питания цепей счетчиков?

Для питания цепей счетчиков могут применяться только однофазные трансформаторы напряжения
Для питания цепей счетчиков могут применяться только трехфазные трансформаторы напряжения, в том числе четерех- и пятистержневые, применяемые для контроля изоляции
Для питания цепей счетчиков могут применяться как однофазные, так и трехфазные трансформаторы напряжения, в том числе четерех- и пятистержневые, применяемые для контроля изоляции

ПУЭ п. 1.5.22. Для питания цепей счетчиков могут применяться как однофазные, так и трехфазные трансформаторы напряжения, в том числе четерех- и пятистержневые, применяемые для контроля изоляции.

Что должно быть предусмотрено при нескольких системах шин и присоединении каждого трансформатора напряжения только к своей системе шин?

Должна быть предусмотрена защита минимального напряжения ТН
Должна быть предусмотрена защита от однофазных замыканий на землю в цепях ТН
Должна быть предусмотрена защита от повышения напряжения ТН
Должно быть предусмотрено устройство для переключения цепей счетчиков каждого присоединения на ТН соответствующих систем шин

ПУЭ п. 1.5.25. При нескольких системах шин и присоединении каждого трансформатора напряжения только к своей системе шин должно быть предусмотрено устройство для переключения цепей счетчиков каждого присоединения на трансформаторы напряжения соответствующих систем шин.

Какое из перечисленных требований к установке счетчиков технического учета на предприятиях не соответствует требованиям ПУЭ?

Допускается установка счетчиков технического учета на вводе предприятия, если расчетный учет с этим предприятием ведется по счетчикам, установленным на подстанциях или электростанциях энергосистем
На установку и снятие счетчиков технического учета на предприятиях требуется разрешение энергоснабжающей организации
Приборы технического учета на предприятиях (счетчики и измерительные трансформаторы) должны находиться в ведении самих потребителей
Все перечисленные требования указаны верно

ПУЭ п. 1.5.42. На предприятиях следует предусматривать техническую возможность установки (в условиях эксплуатации) стационарных или применения инвентарных переносных счетчиков для контроля за соблюдением лимитов расхода электроэнергии цехами, технологическими линиями, отдельными энергоемкими агрегатами, для определения расхода электроэнергии на единицу продукции или полуфабриката.

Допускается установка счетчиков технического учета на вводе предприятия, если расчетный учет с этим предприятием ведется по счетчикам, установленным на подстанциях или электростанциях энергосистем.

На установку и снятие счетчиков технического учета на предприятиях разрешения энергоснабжающей организации не требуется.

1.5.43. Приборы технического учета на предприятиях (счетчики и измерительные трансформаторы) должны находиться в ведении самих потребителей и должны удовлетворять требованиям 1.5.13 (за исключением требования о наличии пломбы энергоснабжающей организации), 1.5.14 и 1.5.15.

Какой класс точности должен быть у измерительных приборов?

Не хуже 1,0
Не хуже 1,5
Не хуже 2,5
Не хуже 3,0

ПУЭ п. 1.6.2. Средства измерений электрических величин должны удовлетворять следующим основным требованиям:

1) класс точности измерительных приборов должен быть не хуже 2,5;

2) классы точности измерительных шунтов, добавочных резисторов, трансформаторов и преобразователей должны быть не хуже приведенных в табл.1.6.1.

Таблица 1.6.1.

Класс точности прибораКласс точности шунта, добавочного резистораКласс точности измерительного преобразователяКласс точности измерительного трансформатора
1,00,50,50,5
1,50,50,5*0,5*
2,50,51,01,0**

* Допускается 1,0.

** Допускается 3,0.

3) пределы измерения приборов должны выбираться с учетом возможных наибольших длительных отклонений измеряемых величин от номинальных значений.

Контрольная работа: Выбор трансформаторов тока в цепях учёта

Проверить правильно ли выбраны трансформаторы тока при выполнении учета электроэнергии на силовом трансформаторе.

№ п/пМощность трансформатора, кВАМощность нагрузки изменяется от указанной до номинальнойКоэффициент трансформации тр-ра тока
10250, 10/0,4 кВ7075/5

Задача 1. Необходимо выполнить учет электроэнергии на силовом трансформаторе 250 кВА, 10/0,4 кВ . Мощность нагрузки трансформатора изменяется от 70 кВА до номинальной. Ячейка трансформатора оборудована трансформаторами тока с К1 =75/5 (коэффициент трансформации в виде отношения номинальных первичного и вторичного токов). Требуется проверить их пригодность (правильно ли выбраны ТТ).

Номинальный первичный ток трансформатора по стороне 10 кВ

=250/(√3∙10)=25/√3=14,43 А

Ток минимальной нагрузки

=70/(√3∙10)=7/√3=4,04 А

Вторичный ток при номинальной нагрузке

=14,43∙5/75=0,96 А

Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика. Номинальный вторичный ток равен 5А.

0,96А-х% 5/100=0,96/х 5*х=0,96*100 х=96/5 х=19,2

Отношение вторичного тока к номинальному в процентах составит:

(0,96/5)∙100%=19,25<40% – условие не выполняется

Вторичный ток при минимальной нагрузке

=4,04∙5/75=0,27 А

Согласно ПУЭ при минимальной нагрузке присоединения вторичный ток должен составлять не менее 5%. от номинального тока счетчика. Номинальный вторичный ток равен 5А.

Отношение вторичного тока к номинальному в процентах составит:

(0,27/5))∙100%=5,39>5% – условие выполняется, но можно лучше

Таким образом, трансформатор тока нужно заменить трансформатором тока 30/5.

Тогда вторичный ток при номинальной нагрузке

=14,43∙5/30=72,15/30=2,405 А

А отношение вторичного тока к номинальному в процентах составит:

(2,405/5)∙100%=48,1>40% – условие выполняется

Вторичный ток при минимальной нагрузке

=4,04∙5/30=20,2/30=0,67 А

Отношение вторичного тока к номинальному в процентах составит:

(0,67/5))∙100%=0,135*100=13,5>5% – условие выполняется

Вывод: Трансформатор тока представляет собой вспомогательный аппарат, в котором вторичный ток практически пропорционален первичному току и предназначенный для включения измерительных приборов и реле в электрические цепи переменного тока. Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего их персонала от высокого напряжения.

Обычно трансформатор тока выбирается с условием, чтобы его вторичный ток не превышал 110% номинального. С другой стороны, трансформаторы тока, выбранные с завышенными коэффициентами трансформации с учетом тока КЗ, при малых вторичных токах имеют повышенные погрешности. Согласно ПУЭ при максимальной нагрузке присоединения вторичный ток должен составлять не менее 40% от номинального тока счетчика, а при минимальной – не менее 5%.

Читайте так же:
Соседи подключились через мой электросчетчик

Таким образом трансформатор тока был выбран неправильно. Так как номинальный ток вторичной обмотке указан в паспортной табличке и равен 5А, то обратимся к принятой для ТТ шкале номинальных первичных токов: 1,5,10,15,20,30,40,50,75 и т.д. Выбрав вторичный ток = 30А получаем трансформатор с коэффициентом трансформации К=30/5

2. Расчет нагрузки трансформатора тока

Определить нагрузку на трансформатор напряжения и падение напряжения в кабеле. Сравнить с допустимыми значениями.

№п/пМеждуфазная нагрузка, ВАДлина кабеля до трансформатора напряжения, мСечение кабеля, мм 2
Sаb S Sса
10333338252,5

Для трехфазного трансформатора напряжения определяется мощность нагрузки SТН каждой из фаз по формуле

где — наибольшая и наименьшая мощности междуфазной нагрузки

Из трех вычисленных таким образом нагрузок берется наибольшая SТНmax , и проверяется неравенство .

Наиболее загружена фаза с . Мощность ее нагрузки

Расчетная нагрузка трансформатора напряжения ,

т.е. не превышает допустимую.

Сопротивление соединительных проводов определяется по формуле

где ℓ – длина провода между трансформатором тока и счетчиком, м; γ – удельная проводимость; для меди γ = 53 м/(Ом·мм 2 ), для алюминия γ = 32 м/(Ом·мм 2 ); s- сечение провода, мм 2 .В токовых цепях сечение медных проводов должно быть не менее 2,5 мм 2 , алюминиевых – не менее 4 мм 2 .

Сопротивление алюминиевого провода

Определяется ток нагрузки IТН фазы c:

Ток нагрузки в фазе с

Согласно ПУЭ сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков выбираются таким образом, чтобы потери напряжения в этих цепях составляли не более 0,25% номинального напряжения. При номинальном напряжении 100 В потеря напряжения в вольтах численно совпадает с потерей напряжения в процентах.

Определяется падение линейного напряжения ΔU для трехфазного трансформатора напряжения:

Падение напряжения в соединительных проводах

<0,25% что допустимо.

Вывод: Измерительные трансформаторы напряжения– это промежуточные трансформаторы, через которые включаются измерительные приборы при высоких напряжениях. Благодаря этому измерительные приборы оказываются изолированными от сети, что делает возможным применение стандартных приборов (с переградуированием их шкалы) и тем самым расширяет пределы измеряемых напряжений. Нагрузка на трансформатор и падение напряжения в кабеле не превышают допустимые.

3. Расчет экономии электроэнергии, затрачиваемой на освещение

Производственный цех имеет верхнее освещение. Источник света – N=285 светильников, каждый из которых имеет одну лампу накаливания.

Мощность лампы накаливания .

Исследование освещения показало, что M=54 светильников с натриевыми лампами высокого давления мощностью обеспечат тот же уровень освещенности в цехе.

Срок службы ламп накаливания (ЛН) – 1000 часов.

Срок службы натриевых ламп высокого давления (НЛ) – 10000 часов.

Время работы светильников в год часов.

Расчет включает следующие этапы:

1. Расчет капитальных затрат.

2. Расходы на электроэнергию.

3. Эксплуатационные расходы.

4. Расчет срока окупаемости.

1. Капитальные затраты (КЗ)

Статья расходаЛННЛ
1. Количество светильников28554
2. Стоимость светильников, включая управления (за ед., у. е.)100180
3. Стоимость замены ламп (за ед., у. е.)1248
4. Стоимость установки светильников (за ед., у. е.)50120
ИТОГО: КЗ285*(100+12+50)=285*162=4617054*(180+48+ 120)=54*348= 18792

КЗ=M (Расход по статье 2+расход по статье 3+расход по статье 4))

2. Расходы на электроэнергию

Статья расходаЛННЛ
1. Количество светильников28554
2. Потребление электроэнергии каждой лампой, Вт500400
3. Часы работы, час/год(Тр)30003000
Электроэнергия, потребляемая лампами накаливания за год, кВтч/год: 285*500Вт*3000 час/год=427500000Вт∙ч/год=427500 кВт∙ч/год54*400Вт*3000=64800000 Вт∙ч/год=64800 кВт∙ч/год
4. Стоимость эл. энергии за 1 кВтч, у. е. (Т)0,050,05
ИТОГО. Общие расходы на электроэнергию за год. где Т – тариф за 1 кВтч.427500*0,05=2137564800*0,05=3240

3. Эксплуатационные расходы

8. Общие эксплуатационные расходы (ОЭР) определяются как сумма эксплуатационных расходов и расходов на электроэнергию

4. Расчет срока окупаемости.

4.1. Экономия за год, у. е.

Э=ОЭРЛН – ОЭРНЛ= 32062,50 -4071,60=27990,90

4.2. Срок окупаемости, лет.

ИТОГО: КЗ285*(100+12+50)=285*162=4617054*(180+48+ 120)=54*348= 18792

=46170/27990,90=1,65=165/100=(165*12)/(100*12)=1980/1200=19,8/12= 12 мес+7,8 мес=1год8 мес – для ламп накаливания

=18792/27990,90=0,67=67/100=(67*12)/(100*12)=804/1200=8,04/12= 8 мес – длясветильников с натриевыми лампами высокого давления

Выводы: несмотря на более низкую стоимость ламп и светильников накаливания, стоимости их замены по сравнению с натриевыми лампами высокого давления и их светильников, ламп накаливания требуется почти в 5 раз больше, светильники под лампы накаливания необходимо чаще чистить и срок службы их в 10 раз меньше. Экономия от установки натриевых ламп составила 27990,90 у. е., а срок их окупаемости на 1 год меньше.

Заключение

В ходе данной работы я ознакомился с руководящими документами; научился производить расчеты и выбор трансформаторов тока; узнал назначение, принцип действия, область применения и методы расчета трансформаторов тока и напряжения. Научился производить расчет экономии электроэнергии в производстве. Экономия электроэнергии возможна при сведении к минимуму потерь электроэнергии. Технологические потери (расход) электроэнергии при ее передаче по электрическим сетям (далее – ТПЭ) – потери в линиях и оборудовании электрических сетей, обусловленные физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования с учетом расхода электроэнергии на собственные нужды подстанций и потерь, вызванных погрешностью системы учета электроэнергии. Определяются расчетным путем.

Коммерческие потери электроэнергии (их определение в законодательной базе отсутствует) связаны с неоплатой потребителем электрической энергии, а также ее хищением. Необходимо учитывать погрешности измерительных комплексов, в которые входят трансформаторы тока и трансформаторы напряжения. Здесь важны их классы точности, реальные условия эксплуатации, недогрузка или перегрузка, правильность схем подключения.

Литература

1. Справочник по проектированию электрических сетей и оборудования / Под ред. Ю.Г. Барыбина – М.: Энергоатомиздат, 1991. – 464 с.

2. Головкин Г.И. Энергосистема и потребители ЭЭ. – М., Энергоатомиздат, 1984 г. – 360 с.

3. Справочная книга для проектирования электрического освещения / Под ред. Г.М. Кнорринга. – Л.: Энергия, 1976 – 384 с.

Требования к организации учета

Приборы учета — совокупность устройств, обеспечивающих измерение и учет электроэнергии (измерительные трансформаторы тока и напряжения, счетчики электрической энергии, телеметрические датчики, информационно — измерительные системы и их линии связи) и соединенных между собой по установленной схеме.

Счетчик электрической энергии — электроизмерительный прибор, предназначенный для учета потребленной электроэнергии, переменного или постоянного тока. Единицей измерения является кВт*ч или А*ч.

Читайте так же:
Судебная практика по установке электрических счетчиков

Расчетный счетчик электрической энергии — счетчик электрической энергии, предназначенный для коммерческих расчетов между субъектами рынка.

Для учета электрической энергии используются приборы учета, типы которых утверждены федеральным органом исполнительной власти по техническому регулированию и метрологии и внесены в государственный реестр средств измерений. Классы точности приборов учета определяются в соответствии с техническими регламентами и иными обязательными требованиями, установленными для классификации средств измерений.

Счетчики для расчета электроснабжающей организации с потребителями электроэнергии рекомендуется устанавливать на границе раздела сети (по балансовой принадлежности) сетевой организации и потребителя. В случае если расчетный прибор учета расположен не на границе балансовой принадлежности электрических сетей, объем принятой в электрические сети (отпущенной из электрических сетей) электрической энергии корректируется с учетом величины нормативных потерь электрической энергии, возникающих на участке сети от границы балансовой принадлежности электрических сетей до места установки прибора учета, если соглашением сторон не установлен иной порядок корректировки.

Не разрешается устанавливать счетчики в помещениях, где по производственным условиям температура может часто превышать +40 °С, а также в помещениях с агрессивными средами.

Допускается размещение счетчиков в неотапливаемых помещениях и коридорах распределительных устройств электростанций и подстанций, а также в шкафах наружной установки. При этом должно быть предусмотрено стационарное их утепление на зимнее время посредством утепляющих шкафов, колпаков с подогревом воздуха внутри них электрической лампой или нагревательным элементом для обеспечения внутри колпака положительной температуры, но не выше +20 °С.

Счетчики должны устанавливаться в шкафах, камерах комплектных распределительных устройств (КРУ, КРУН), на панелях, щитах, в нишах, на стенах, имеющих жесткую конструкцию.

Допускается крепление счетчиков на деревянных, пластмассовых или металлических щитках. Высота от пола до коробки зажимов счетчиков должна быть в пределах 0,8 — 1,7 м. Допускается высота менее 0,8 м, но не менее 0,4 м.

В местах, где имеется опасность механических повреждений счетчиков или их загрязнения, или в местах, доступных для посторонних лиц (проходы, лестничные клетки и т.п.), для счетчиков должен предусматриваться запирающийся шкаф с окошком на уровне циферблата. Аналогичные шкафы должны устанавливаться также для совместного размещения счетчиков и трансформаторов тока при выполнении учета на стороне низшего напряжения (на вводе у потребителей).

Конструкции и размеры шкафов, ниш, щитков и т.п. должны обеспечивать удобный доступ к зажимам счетчиков и трансформаторов тока. Кроме того, должна быть обеспечена возможность удобной замены счетчика и установки его с уклоном не более 1°. Конструкция его крепления должна обеспечивать возможность установки и съема счетчика с лицевой стороны.

Для безопасной установки и замены счетчиков в сетях напряжением до 380 В должна предусматриваться возможность отключения счетчика установленными до него на расстоянии не более 10 м коммутационным аппаратом или предохранителями. Снятие напряжения должно предусматриваться со всех фаз, присоединяемых к счетчику.

Трансформаторы тока, используемые для присоединения счетчиков на напряжении до 380 В, должны устанавливаться после коммутационных аппаратов по направлению потока мощности.

Каждый установленный расчетный счетчик должен иметь на винтах, крепящих кожух счетчика, пломбы с клеймом госповерителя, а на зажимной крышке — пломбу сетевой организации.

На вновь устанавливаемых трехфазных счетчиках должны быть пломбы государственной поверки с давностью не более 12 месяцев, а на однофазных счетчиках — с давностью не более 2 лет.

Основным техническим параметром электросчетчика является «класс точности», который указывает на уровень погрешности измерений прибора. В соответствии с разделом «Правила организации учета электрической энергии на розничных рынках» «Основных положений функционирования розничных рынков электрической энергии», утвержденных Постановлением Правительства РФ от 04.05.2012 № 442, требования к контрольным и расчетным приборам учета электроэнергии, в зависимости от групп потребителей, должны быть следующими:

Категория потребителейУровень напряженияПодключениеАльтернативное условиеКласс точностиГлубина хранения данных
Потребители-гражданеНе имеет значенияНе имеет значения2,0 и вышеНе регламентируется
Юридические и приравненные к ним лица (на границе раздела объектов электросетевого хозяйства и внутридомовых инженерных систем МКЖД)0,4 кВНовоеПри замене вышедшего из эксплуатации, вышедшего из строя прибора учета или после истечения установленного межповерочного интервала существующего прибора учета1,0 и вышеНе регламентируется
Юридические и приравненные к ним лица (на границе раздела объектов электросетевого хозяйства и внутридомовых инженерных систем МКЖД)0,4 кВСуществующееДо момента выхода из эксплуатации, выхода из строя, истечения межповерочного интервала прибора учета2,0 и вышеНе регламентируется
Юридические и приравненные к ним лица с максимальной мощностью менее 670 кВт35 кВ и нижеНовоеПри замене выбывших из эксплуатации, вышедших из строя приборов учета или после истечения установленного межповерочного интервала существующего прибора учета1,0 и вышеНе регламентируется
Юридические и приравненные к ним лица с максимальной мощностью менее 670 кВт35 кВ и нижеСуществующееДо момента выхода из эксплуатации, выхода из строя, истечения межповерочного интервала прибора учета2,0 и вышеНе регламентируется
Юридические и приравненные к ним лица с максимальной мощностью менее 670 кВт110 кВ и вышеНовоеПри замене выбывших из эксплуатации, вышедших из строя приборов учета или после истечения установленного межповерочного интервала существующего прибора учета0,5S и вышеНе регламентируется
Юридические и приравненные к ним лица с максимальной мощностью менее 670 кВт110 кВ и вышеСуществующееДо момента выхода из эксплуатации, выхода из строя, истечения межповерочного интервала прибора учета1,0 и вышеНе регламентируется
Юридические и приравненные к ним лица с максимальной мощностью не менее 670 кВтНе имеет значенияНовоеПри замене выбывших из эксплуатации, вышедших из строя приборов учета или после истечения установленного межповерочного интервала существующего прибора учета0,5S и выше120 дней и более или включенных в автоматизированную систему учета электроэнергии
Юридические и приравненные к ним лица с максимальной мощностью не менее 670 кВтНе имеет значенияСуществующееДо момента выхода из эксплуатации, выхода из строя, истечения межповерочного интервала прибора учета1,0 и выше
Юридические и приравненные к ним лица присоединенные к объектам ЕНЭСНе имеет значенияНе имеет значения0,5S и выше120 дней и более или включенных в автоматизированную систему учета электроэнергии

Функциональные возможности современных электронных счетчиков позволяют вести учет электроэнергии дифференцированно по времени суток. Потребители могут обращаться в Энергосбытовые компании с просьбой о заключении договора на электроснабжение с учетом расчета по тарифам, дифференцированным по зонам суток. Cистема двухтарифной оплаты за электроэнергию, то есть раздельной оплаты ночного (с 23.00 до 7.00) и дневного тарифов (с 7.00 до 23.00) действует уже не первый год.

Читайте так же:
Замена электросчетчика по социальному найму

Класс точности трансформаторов тока и напряжение для присоединения расчетных счетчиков электроэнергии должен быть не более 0,5.

Допускается применение трансформаторов тока с завышенным коэффициентом трансформации (по условиям электродинамической и термической стойкости или защиты шин), если при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока будет составлять не менее 40 % номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5 %.

Присоединение токовых обмоток счетчиков к вторичным обмоткам трансформаторов тока следует проводить, отдельно от цепей защиты и совместно с электроизмерительными приборами.

Использование промежуточных трансформаторов тока для включения расчетных счетчиков запрещается.

Нагрузка вторичных обмоток измерительных трансформаторов, к которым присоединяются счетчики, не должна превышать номинальных значений.

Сечение и длина проводов и кабелей в цепях напряжения расчетных счетчиков должны выбираться такими, чтобы потери напряжения в этих цепях составляли не более 0,25 % номинального напряжения при питании от трансформаторов напряжения класса точности 0,5. Для обеспечения этого требования допускается применение отдельных кабелей от трансформаторов напряжения до счетчиков.

Согласно раздела «Правила организации учета электрической энергии на розничных рынках» «Основных положений функционирования розничных рынков электрической энергии», утвержденных Постановлением Правительства РФ от 04.05.2012 № 442 собственник энергопринимающих устройств несет ответственность по оснащению объектов электросетевого хозяйства приборами учета электрической энергии, а также по возобновлению учета электроэнергии, в случае выхода его из строя, путем установки нового прибора учета.

Компания «Россети Центр» оказывает услуги по установке, замене приборов учета электрической энергии физическим лицам, юридическим и приравненным к ним лицам по договору оказания услуг.

«Россети Центр» осуществляет перепрограммирование многотарифных приборов учета электроэнергии потребителей

В «Россети Центр» организована кампания по перепрограммированию многотарифных приборов учета, находящихся в собственности потребителей физических лиц, присоединенных непосредственно или опосредованно к электроустановкам «Россети Центр».

Необходимость перепрограммирования многотарифных приборов учета электроэнергии возникла после подписания 30 июня 2011 года Президентом РФ Федерального Закона «Об исчислении времени», отменившего практику перехода на «зимнее время».

Для того чтобы перепрограммировать свой прибор учета электроэнергии, Вам необходимо:

1) Подать заявку на перепрограммирование прибора учета одним из удобных для Вас способов:

  • позвонив на круглосуточную прямую линию энергетиков 8-800-50-50-115 (звонок бесплатный),
  • через Интернет-приемную на нашем сайте www.mrsk-1.ru,
  • посетив Центры обслуживания клиентов, адреса которых указаны на нашем сайте в разделе «Клиентам» http://www.mrsk-1.ru/customers/customer-service/centers/

2) Обеспечить доступ к прибору учета в согласованное с электросетевой компанией время. Присутствие собственника прибора учета при работе электромонтера обязательно, так как в итоге перепрограммирования прибора учета будет составлен Акт проверки прибора учета в 2 экземплярах.

Работник «Россети Центр» при проведении работ должен иметь при себе удостоверение сотрудника установленного образца с подписью и печатью.

Перепрограммирование прибора учета займет от 30 минут до часа.

Для того, что бы определить проведено ли перепрограммирование Вашего прибора учета, необходимо сверить реальное и отображаемое время суток на дисплее прибора учета — оно должно совпадать.

Измерение тока КЗ в домашних условиях

Сегодняшняя статья – продолжение моей статьи под интригующим названием «Ток короткого замыкания: размер имеет значение». На этот раз расскажу про то, как можно измерить ток КЗ при помощи измерительных приборов. Я проведу натурный эксперимент по измерению тока КЗ у себя в квартире и на даче. Расскажу не только про способы с применением профессиональной техники стоимостью десятки тысяч рублей, но и как это сделать при помощи обычного любительского мультиметра.

Что влияет на значение тока короткого замыкания

При эксплуатации электросети важно мониторить параметры её качества, основной их которых – напряжение. Об этом я писал в одной из прошлых статей. Как известно, чтобы узнать напряжение, нужен вольтметр. Но и без него можно легко узнать, что с напряжением что-то не так – например, по тусклому свечению лампочек (в случае низкого напряжения) либо по перегоранию электроприборов при повышенном напряжении.

С током короткого замыкания не всё так просто – его значение может «гулять», и это не будет особо заметно. А проявится это в самый неподходящий момент – например, когда при замыкании электропроводки не сработает автоматический выключатель. Поэтому рекомендуется проверять (рассчитывать и/или измерять) ток КЗ периодически – перед проектированием электрощита, после ввода электропроводки в эксплуатацию, а затем – раз в год.

В любом измерении тока КЗ нужно понимать, что измеренный или расчетный ток КЗ относится только к конкретной точке электросети, применительно к которой производится измерение и расчет. Невозможно предугадать, в каком месте состоится замыкание, поэтому обычно измерения проводят в двух местах — в электрощите и самой удаленной от него точке.

  • Замена питающего трансформатора на ТП;
  • Замена любого участка электрической сети, в том числе высоковольтного;
  • Изменение состояния защитного и коммутационного оборудования (рубильники, автоматические выключатели и т.д.);
  • Увеличение или уменьшение напряжения в точке КЗ, которое может происходить по нескольким причинам;
  • Ухудшение или улучшение контакта (изменение переходного сопротивления) в любой точке сети – от клемм питающего трансформатора до клемм нашей розетки;
  • Ухудшение контакта (вплоть до полного обрыва) нейтрального проводника.

Косвенно о низком токе КЗ можно сказать и без приборов, опираясь на такие факты:

  • Удаленность от трансформаторной подстанции;
  • Низкая мощность трансформатора;
  • Нестабильность напряжения в зависимости от времени суток или при включении мощных электроприборов.

Чем плох и хорош низкий и высокий ток КЗ, я подробно рассмотрел в первой части статьи (ссылку давал в начале).

Зачем нужно знать ток КЗ?

Ток КЗ – это максимально возможный ток в определенной точке сети. Этот параметр определяет качество электропроводки в целом. Зная значение ожидаемого тока короткого замыкания, можно:

  • Оценить способность установленных автоматических выключателей обеспечить защиту при коротком замыкании;
  • Оценить селективность разных уровней защиты;
  • Проверить сопротивление заземляющего устройства (качество контура системы заземления).

Подробнее вопросы селективности и выбора автоматических выключателей будут рассмотрены в следующей статье.

Как измеряется ток КЗ при помощи приборов

Есть старый, «дедовский» способ измерения тока КЗ – с использованием понижающего трансформатора, амперметра и вольтметра. Далее нужен расчет по формулам.

Есть и другой, экстремальный способ – подключают амперметр и вручную создают короткое замыкание, замыкая цепь. Это не наш метод – мало того, что он неточен, но при таком «измерении» электросеть подвергается экстремальной нагрузке. К тому же не факт, что защита выбрана правильно, поэтому можно просто-напросто сжечь электропроводку.

Я в школьные годы решил как-то проверить «ток в розетке» этим методом, и воткнул свой новенький тестер ТЛ-4М в режиме амперметра (∼3А) в розетку. Результат – в доме выбило «пробки», в тестере сгорел шунт, а я получил бесценный опыт.

Сейчас большинство приборов вычисляют полное сопротивление петли «фаза – ноль», а затем автоматически пересчитывают полученное значение в ток КЗ. Делается это методом падения напряжения, подключая к точке измерения нагрузку (резистор) известного сопротивления. Номинал резистора обычно равен 10 Ом, время измерения – 30 мс (полтора периода напряжения). Такое измерение не перегружает сеть, и в то же время обеспечивает максимальную точность, не вызывая срабатывания автоматических выключателей – тепловой расцепитель за такое время не успеет сработать, а электромагнитному не хватит величины испытательного тока.

При этом ток КЗ измеряется во всех вариантах, где он может возникнуть: «фаза – нейтраль», «фаза – защитное заземление», «фаза – фаза».

Чтобы правильно провести измерения тока КЗ при помощи приборов, нужно обладать достаточной квалификацией, и внимательно изучить инструкцию к прибору. Например, необходимо учитывать сопротивление измерительных проводов. Важен и тот факт, что полученное значение тока КЗ нужно пересчитать под реальное напряжение в сети.

Читайте так же:
График работы двухтарифный счетчик

Измерение тока КЗ. Выводим формулы

Итак, самый распространенный метод измерения тока КЗ – метод падения напряжения, который мы сейчас и проверим на практике. Этот метод – косвенный, то есть итоговое значение получается путем измерения некоторых параметров с дальнейшими расчетами по формулам. Эти формулы мы сейчас и получим. Конечно, не без помощи нашего немецкого коллеги, о котором мы знаем из уроков физики.

Для начала – несколько пояснений. Предлагаю условиться, что розетка – это источник напряжения, обладающий внутренним сопротивлением Ri. Это сопротивление фактически является сопротивлением цепи «фаза-ноль». Также для простоты изложения условимся не учитывать реактивную составляющую, т.е. принимаем cos φ = 1. Таким образом, получаем такую схему, к которой можем применить закон Ома для полной цепи:

Схема для закона Ома

Схема для пояснения закона Ома для полной цепи

Иными словами, получаем резистивный делитель напряжения, напряжение на выходе которого всегда ниже, чем на входе. Сопротивление Ri «олицетворяет» собой все сопротивления, которые встречаются на пути электроэнергии – от сопротивления обмоток трансформатора на подстанции (ТП) до переходного сопротивления клемм розетки, через которые подключается нагрузка с сопротивлением .

Напряжение Uхх – это напряжение холостого хода, которое будет действовать на вторичной обмотке трансформатора, когда нагрузка не подключена. – напряжение на нагрузке, которое всегда меньше Uхх. В расчетах будет фигурировать и номинальное напряжение Uном, которое обычно бывает равным 220 или 230 В.

Iкз=Uхх/Ri (0)

Напряжение холостого хода легко узнать – оно измеряется вольтметром, когда вся нагрузка на данной линии отключена.

Напряжение холостого хода Uхх – это наибольшее значение напряжения, которое в принципе может быть в розетке. Конечно, за исключением аварийных режимов типа обрыва нуля.

Теперь дело за малым – определить внутреннее сопротивление источника (сопротивление петли «фаза-ноль») Ri. Это можно сделать тремя способами, про которые я сейчас расскажу.

1. Расчет петли «фаза-ноль» через ток нагрузки

Сопротивление Ri теоретически не зависит от приложенного к нему напряжения. Поэтому, мы можем измерить ток нагрузки Iн и напряжение на Ri не в момент короткого замыкания, а при подключении нагрузки с ненулевым сопротивлением. А затем применить закон Ома:

Ri=(Uхх-Uн)/Iн (1)

Ток нагрузки можно измерить двумя способами – при помощи амперметра (прямого включения или через трансформатор тока) и применяя токоизмерительные клещи. Амперметр дает более точное измерение, клещи – более оперативное. Я использовал клещи, но можно применить и амперметр, встроенный в мультиметр.

2. Расчет петли «фаза-ноль» через сопротивление нагрузки

Вторую формулу можно получить, составив уравнение пропорциональности между сопротивлениями Ri и Rн, и напряжениями на них. Получаем:

Ri=(Uхх-Uн)·Rн/Uн (2)

Чтобы использовать формулу (2), нужно предварительно измерить сопротивление нагрузки при помощи омметра. Поскольку мы условились, что реактивную составляющую мы не учитываем, для чистоты эксперимента нагрузка обязательно должна быть активной. Я использовал масляные обогреватели – их сопротивление чисто активное, и не зависит от напряжения и наличия питания. Как вариант, в качестве нагрузочного сопротивления можно использовать утюг или электрочайник.

3. Расчет петли «фаза-ноль» через мощность нагрузки

Третий способ — самый простой, но его можно применить только тогда, когда мы точно знаем мощность нагрузки.

Составляющие закона Ома зависят от номинальной мощности нагрузки Рном, поэтому путем нехитрых манипуляций получаем следующую формулу:

Ri=(Uном(Uхх-Uн))/Pном (3)

Чтобы проводить расчеты по формуле (3), нужно знать номинальное напряжение Uном (220 или 230 В) и мощность нагрузки. Обычно их приводит производитель. Вот фото шильдика нагревателя с Uном = 230 В и Рном = 1500 Вт:

Нагрузка мощностью 1500 Вт

Шильдик нагревателя мощностью 1500 Вт

Забегая вперед, скажу, что этот способ – наименее точный, поскольку производитель может писать любые данные, преследуя маркетинговые или другие цели.

Теперь, рассчитав значение Ri наиболее удобным способом по формулам (1), (2) или (3), можно найти ток короткого замыкания по формуле (0) даже в домашних условиях. Чем мы наконец-то и займемся.

Измерение тока КЗ в квартире

Трансформаторная подстанция, которая питает мой дом, находится на расстоянии около 30 м до моего подъезда, плюс подъем на 5-й этаж и разводка по квартире. То есть, длина питающей линии сравнительно невелика. Мощность трансформатора на ТП – 400 кВА.

Результаты измерений, в которых участвовал обогреватель с паспортной мощностью 1500 Вт, приведены в таблице:

Измерение тока кз в квартире, исходные и измеренные данные

Далее, используя формулы (1), (2) и (3), я рассчитал сопротивление петли фаза-ноль Ri в трех вариантах. Соответствующие токи Iкз посчитаны по формуле (0):

Результаты расчетов тока короткого замыкания

Результаты расчетов тока короткого замыкания в квартире тремя способами по измеренным данным

Измерения я проводил в самой дальней от электрощита розетке, благо она сдвоенная, поэтому напряжение на нагрузке измерять было легко, без использования тройников и переносок. Как видно, три формулы дали три разных результата. Это нормально, поскольку методики измерения и погрешности разные. В бытовых условиях при использовании неповеренных средств измерений погрешность оценить проблематично. Но оценить значение тока КЗ можно вполне.

Из трех значений правильно выбрать наихудшее – наименьший ток КЗ составил 166 А. Этот расчет я делал исходя из измерения сопротивления нагрузки омметром. Считаю этот способ наиболее точным.

Читайте так же:
Какой электросчетчик лучше для дачи

Что означает это значение? Это означает, что я правильно сделал, когда поменял все квартирные автоматы на 25 А, которые стояли от застройщика с 1979 года, на автоматы с номинальным током 16А. Обладая характеристикой отключения «С», они с некоторой вероятностью отключат свою линию при токе КЗ от 80 до 159 А, а при сверхтоке 160 А и более вероятность отключения равна 100%. Поэтому ток КЗ 166 А можно считать в данном случае достаточным.

Как определить, при каких токах конкретный автомат может отключиться, а при каких должен, а писал не раз, например, тут.

Откровенно говоря, я ожидал большего значения тока КЗ. Ведь по правилам (ПТЭЭП, п.28.4) должен быть запас 10%, а для моего автоматического выключателя это 176 А. Я подробно рассказывал об этом в предыдущей статье. Можно успокоиться тем, что другие методы измерения дали вполне приемлемые результаты (176 и 189 А).

Измерение тока КЗ в дачном домике

Не смотря на то, что недавно домик подключили от воздушной линии через новый провод СИП, я не питаю особых иллюзий – длина линии до квартального трансформатора – более 150 м, а его мощность – всего 63 кВА.

Для нагрузки я использовал два масляных обогревателя, включенных через переноску (длина 3 м, сечение провода 1,5 мм 2 ) с тройной колодкой. Что получилось в этом случае:

Исходные данные и измерения для расчета тока КЗ в доме на даче

Расчет тока КЗ

Расчет тока КЗ на даче по формулам

Видим, что нужный (наименьший) результат опять получен методом измерения сопротивления нагрузки – 88 А. Много это или мало? В данном случае – очень мало, учитывая то, что у меня на даче установлены автоматические выключатели С16. Даже для третьего способа со значением тока КЗ 120 А данный автомат не даст гарантии срабатывания при КЗ (вероятность будет около 50%).

А это не просто цифры – это вероятность возникновения пожара! Ведь выключение в случае КЗ будет только по тепловому расцепителю, а длиться это может несколько минут, согласно время-токовой характеристике.

Что ж, нужно заменить автоматические выключатели на другие – с номиналом 16 А и характеристикой отключения «В», которые при токе 80 А гарантированно отключат аварийную розетку. И запас в 10% будет обеспечен!

На этом всё – измерения, расчеты и выводы я сделал. В следующей части раскроем более глобальный аспект данной темы – обеспечение селективности защиты в электрических цепях.

Скачать

Эту статью можно почитать в бумажно-журнальном варианте:
• Измерение и расчет тока короткого замыкания / Статья «Измеряем ток КЗ в квартире и на даче», опубликованная в журнале «Электротехнический рынок» №2, 2021 г., pdf, 1.31 MB, скачан: 336 раз./

А обсудить её можно тут, на блоге СамЭлектрик.ру, в комментариях. Буду рад всем замечаниям и вопросам!

Проверка цепи «фаза-нуль»

Петля фаза-нуль

Проверка цепи «фаза-нуль» в электроустановках до 1кВ с глухим заземлением нейтрали это непосредственное измерение тока однофазного короткого замыкания или измерение полного сопротивления петли фаза-нуль.

Объект испытаний (измерений)

Объектом испытаний при проверке цепи «фаза-нуль» в электроустановке до 1кВ с глухим заземлением нейтрали является участок электрической цепи (сети) с присоединенными к нему электрооборудованием и электроприемниками, защищаемый аппаратами защиты:
— предохранителями с калиброванными плавкими вставками;
— автоматическими выключателями с нерегулируемыми расцепителями;
— автоматическими выключателями с регулируемыми расцепителями (тепловыми, электромагнитными или комбинированными), имеющими обратно-зависимую от тока характеристику.

При замыкании на корпус или нулевой защитный проводник должен возникнуть ток однофазного КЗ, превышающий ток плавкой вставки ближайшего предохранителя или расцепителя АВ

В соответствии с ПУЭ-7 п.1.8.39(4) кратность тока КЗ на землю по отношению к ном.току предохранителя или расцепителя АВ д.б. не менее значения, указанного в гл.3.1 ПУЭ-6.

Цель — проверка эффективности мер защиты от косвенного прикосновения посредством автоматического отключения источника питания путем определения полного сопротивления петли фаза-нуль с последующим расчетом тока однофазного короткого замыкания на корпус или ну¬левой провод при полном напряжении сети или непосредственным измерением тока однофазного замыкания на корпус или нулевой защитный проводник.
Проверка производится для наиболее удаленных и наиболее мощных электроприемников, но не менее 10% их общего количества.
Проверку цепи фаза-нуль измерением токов однофазных замыканий или полного сопротивления петли фаза-нуль проводят (см. также таблицу 1):
Перед приемкой электрооборудования в эксплуатацию.
В сроки, определенные графиком планово-предупредительных ремонтов.

Таблица 1 (ПТЭЭП Приложение 3п. 28.4).

1,1 верхнего значения тока срабатывания мгновенно действующего расцепителя (отсечки)

Проверяется непосредственным измерением тока однофазного короткого замыкания с помощью специальных приборов или измерением полного сопротивления петли фаза-нуль с последующим определением тока КЗ.

У ЭУ, присоединенных к одному щитку и находя­щихся в пределах одного помещения, допускается производить измерения только на одной, самой удаленной от точки питания установке.

У светильников наружного освещения проверяется срабатывание защиты только на самых дальних светильниках каждой линии.

Проверку срабатывания защиты групповых линий различных приемников допускается производить на штепсельных розетках с защитным контактом.

По сопротивлению петли фаза-нуль Zфо (Ом) определяется ток короткого замыкания I кз (А):
I кз = Ucp / Zфо.
где Ucp- среднее значение фазного напряжения (В).

Петля фаза-нуль результатПетля фаза-нуль результат измерения

Например:

Напряжение в сети (U) равно 239 В.

Измеренное сопротивление петли фаза-нуль Zфо равно 1,9 Ом)

Величина тока короткого замыкания должна иметь определенную кратность по отношению к номинальному току плавкой вставки или расцепителя автомата защиты не менее значений, приведенных в ПТЭЭП Приложение 3 п.28.4 (см. табл.1) и ПУЭ-6 п.п.3.1.9,7.3.139 (см. табл.2).
Надежное отключение поврежденного участка считается обеспеченным, если ток однофазного замыкания на корпус или нулевой провод Iк.з. отвечает условию:
I к.з > к I н,
где I к.з — ток короткого замыкания;
Iн — номинальный шок плавкой вставки или ток уставки расцепителя АВ;
к — коэффициент, зависящий от вида защиты по требованию ПУЭ.

Таблица 2. Значения коэффициента К в соответствии с требованиями ПУЭ-6 п п. 3.1.9, 7.3.139

Элемент, отключающий ток КЗ (плавкая вставка)Среда не взрыво­опаснаяСреда взрыво­опасна

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector