Azotirovanie.ru

Инженерные системы и решения
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Трансформатор тепловое действие тока

Трансформатор тепловое действие тока

Трансформаторы — это просто!

«Физика — 11 класс»

Назначение трансформаторов

Трансформатором называется электротехнические устройства с помощью которого осуществляется преобразование переменного тока, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности.

Впервые подобные устройства были использованы в 1878 г. русским ученым П.Н.Яблочковым для питания изобретенных им электрических свечей — нового в то время источника света.
Позднее эти устройства получили название трансфораторов.
Трансформатор Яблочкова состоял из двух цилиндрических катушек, надетых на стальной стержень, собранный из отдельных проволок.

Устройство трансформатора

Трансформатор состоит из замкнутого стального сердечника, собранного из пластин, на который надеты две (иногда и более) катушки с проволочными обмотками.
Одна из обмоток, называемая первичной, подключается к источнику переменного напряжения. Другая обмотка, к которой присоединяют нагрузку, т. е. приборы и устройства, потребляющие электроэнергию, называется вторичной.
Условное обозначение трансформатора на электрических схемах

Трансформатор на холостом ходу

Действие трансформатора основано на явлении электромагнитной индукции, открытым Майклом Фарадеем в 1831 году.
Явление электромагнитной индукции: при изменении тока в цепи первой катушки во второй катушке, расположенной рядом, возникает электрический ток.

При питании катушки от источника постоянного тока ток во второй катушке существует только в моменты изменения тока в первой катушке, а на практике — при замыкании и размыкании цепи первой катушки.
Для длительного существования тока необходио непрерывно изменять ток в первой катушке. А это возможно, если соединить ее с источником переменного напряжения. При синусоидальном характере тока в первой катушке ток во второй катушке будет также синусоидальным.

При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, которым возбуждается ЭДС индукции в витках каждой обмотки.
Сердечник из трансформаторной стали концентрирует магнитное поле так, что магнитный поток существует практически только внутри сердечника и одинаков во всех его сечениях.

Мгновенное значение ЭДС индукции е во всех витках первичной или вторичной обмотки одинаково.
Согласно закону Фарадея оно определяется формулой

е = -Ф’

где
Ф’ — производная потока магнитной индукции по времени.

В первичной обмотке, имеющей N1 витков, полная ЭДС индукции

Во вторичной обмотке полная ЭДС индукции

где
N2 — число витков этой обмотки.

Отсюда следует, что

Обычно активное сопротивление обмоток трансформатора мало, и им можно пренебречь.
В этом случае модуль напряжения на зажимах первичной обмотки примерно равен модулю суммарной ЭДС индукции:

При разомкнутой вторичной обмотке трансформатора ток в ней не идет, и имеет место соотношение

Мгновенные значения ЭДС e1 и e2 изменяются синфазно, т.е. одновременно достигают максимума и одновременно проходят через ноль.
Поэтому их отношение можно заменить отношением действующих значений ЭДС и напряжений

Отношение напряжений на обмотках при работе трансформатора на холостом ходу (без нагрузки) называется коэффициентом трансформацииК.
Трансформаторы используются как для повышения напряжения, так и для понижения, т.е. могут быть повышающими и понижающими.
Если К>1, то трансформатор является понижающим,
если К

Работа нагруженного трансформатора

Если к концам вторичной обмотки присоединить цепь, потребляющую электроэнергию, т.е. нагрузить трансформатор, то сила тока во вторичной обмотке уже не будет равна нулю.
Появившийся ток создаст в сердечнике свой переменный магнитный поток, который будет уменьшать изменения магнитного потока в сердечнике.

Уменьшение амплитуды колебаний результирующего магнитного потока не произойдет, так как

Поэтому при замыкании цепи вторичной обмотки автоматически увеличится сила тока в первичной обмотке.
Его амплитуда возрастет таким образом, что восстановится прежнее значение амплитуды колебаний результирующего магнитного потока.

Увеличение силы тока в цепи первичной обмотки происходит в соответствии с законом сохранения энергии: отдача электроэнергии в цепь, присоединенную к вторичной обмотке трансформатора, сопровождается потреблением от сети такой же энергии первичной обмоткой.

При подключении нагрузки ко вторичной цепи КПД трансформатора близок к 100%.
Мощность в первичной цепи при нагрузке трансформатора, близкой к номинальной, примерно равна мощности во вторичной цепи:

При повышении с помощью трансформатора напряжения в несколько раз, сила тока во столько же раз уменьшается (и наоборот).

Трансформатор преобразует переменный электрический ток таким образом, что произведение силы тока на напряжение примерно одинаково в первичной и вторичной обмотках

Чтобы уменььшить нагревание сердечника, его собирают из отдельных стальных пластин, которые изолируются друг от друга бумагой, лаком или окисью металла сердечника.
В трансформаторах малой мощности применяют круглые тороидальные сердечники из стальных колец или стальной ленты.
Для повышения КПД в трансформаторах обмотки высокого и низкого напряжения располагают на одних и тех же стержнях.
В радиотехнике обмотки часто наматываются на средний стерженьь.

При работе трансформатора обмотки нагреваются, для их охлаждения мощные трансформаторы помещают даже в баки с жидким маслом (масляные трансформаторы).

Трансформаторы широко используют в радиоаппаратуре, а также для передачи электроэнергии на большие расстояния в линиях электропередач, для этого строятся трансформаторные подстанции.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Производство, передача и использование электрической энергии. Физика, учебник для 11 класса — Класс!ная физика

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ТРАНСФОРМАТОРА

Трансформатор напряжения

Трансформатор это электротехническое устройство, предназначенное для преобразования напряжения электрической энергии переменного тока. Основной принцип работы трансформатора состоит в использовании явления электромагнитной индукции.

К основным частям, из которых состоит трансформатор, относятся магнитный сердечник (магнитопровод) и намотанные на нём обмотки.

Принцип действия трансформатора напряжения заключается в следующем. Одна из обмоток подключается к источнику электрического напряжения. Эту обмотку называют первичной, она служит источником энергии, трансформируемой устройством.

Ток переменного направления, протекающий по первичной обмотке, создаёт знакопеременный магнитный поток в трансформаторном магнитопроводе.

Под воздействием магнитного потока сердечника во вторичных обмотках (их может быть несколько) наводится электродвижущая сила (ЭДС) индукции. Наведённая ЭДС индукции вызывает во вторичных обмотках появление некоторого напряжения, а при подключении к ним нагрузки — вторичного тока.

Форма магнитного трансформаторного сердечника может быть различной, главное условие — магнитный поток должен образовывать замкнутые контуры (один или несколько).

  • Ш – образные;
  • П – образные;
  • тороидальные (по аналогии с предыдущими типами сердечников их можно назвать О – образными).

В процессе трансформации электрической энергии, часть её теряется вследствие наличия потерь. Трансформаторные потери подразделяются на две категории — потери в меди и в стали. Данные определения требуют разъяснения.

Читайте так же:
Количество теплоты выделяемое проводником с током решение задач

Потери в меди.

Под этим термином подразумеваются омические потери при протекании токов в обмотках трансформаторов. Теряемая в обмотках энергия уходит на их нагрев.

Интересный факт. Нередко встречаются трансформаторы, обмотки которых выполнены из алюминиевых проводников. Теряемую в таких обмотках мощность логично было бы назвать «потери в алюминии», однако такой термин не употребляется. Словосочетание «потери в меди» вероятно можно отнести к профессиональному жаргону.

Потери в стали.

  • потери, возникающие вследствие образования в сердечнике вихревых токов;
  • мощность, затрачиваемая на перемагничивание.

Вихревые токи (токи Фуко) возникают в любом электропроводящем материале под воздействием переменного магнитного поля. Трансформаторный сердечник, являющийся проводником, не является исключением.

Для уменьшения влияния вихревых токов, магнитопроводы трансформаторов обычно изготавливают не цельными изделиями, а набираются из тонких пластин специальной электротехнической стали. Каждая пластина перед сборкой покрывается электроизоляционным лаком.

Такая технология позволяет избежать возникновения глобальных вихревых токов по всей толщине сердечника, что значительно снижает потери энергии и соответственно, нагрев магнитопровода.

ПРИМЕР ИСПОЛЬЗОВАНИЯ ТОКОВ ФУКО

Для того чтобы оценить масштабы энергии, которая может выделяться при протекании вихревых токов, полезно вспомнить принцип работы индукционных плавильных печей. В ёмкость печи, выполненную из огнеупорной керамики, помещают лом стали, чугуна или железную руду.

Плавильная ёмкость окружена мощной спиральной обмоткой, по которой пропускается ток высокой частоты. Содержимое ёмкости в данном случае играет роль магнитного сердечника.

Под воздействием возникающих вихревых токов происходит интенсивный разогрев и расплавление загруженного железосодержащего материала. Электроплавильное производство относится к одному из самых энергоёмких.

Потери на перемагничивание обусловлены следующими факторами:

1. Макроструктура магнитных материалов имеет зернистый характер. Образование структурных зёрен происходит на стадии застывания расплавленного металлического сплава вследствие возникновения множества очагов кристаллизации.

2. В результате образуются зёрна структуры, которые представляют собой монокристаллические образования — домены. Каждый домен магнитного материала имеет некоторое результирующее направление вектора магнитной индукции.

Применительно к процессу трансформации происходит следующее. Ток первичной обмотки создаёт в сердечнике магнитное поле, направление индукции которого меняется с частотой 50 герц (при подключении к обычной электросети).

С такой же частотой происходит переориентация векторов магнитной индукции доменов магнитопровода. Энергия, затрачиваемая на циклическое перемагничивание, выделяется в виде тепла, нагреваемого сердечник.

Энергию, затраченную на перемагничивание сердечника, называют также потерями на гистерезис. Величина этих потерь зависит от свойств материала трансформаторного сердечника, а если более конкретно, от вида их кривой намагничивания — петли гистерезиса.

Наименьшими потерями характеризуются магнитомягкие материалы — электротехническая сталь и пермаллой, которые и используются при изготовлении трансформаторных магнитопроводов.

ВИДЫ ТРАНСФОРМАТОРОВ И ИХ НАЗНАЧЕНИЕ

  • силовые, предназначенные для трансформации мощности;
  • измерительные, к которым относятся трансформаторы тока и напряжения;
  • разделительные, служащие для разделения электрических цепей.

Силовые трансформаторы используются на электрических станциях, в распределительных сетях и в точках потребления электроэнергии. Основная их функция — трансформирование передаваемой электрической энергии с одной ступени напряжения в другую.

Мощные турбогенераторы электрических станций вырабатывают электроэнергию напряжением 20 кВ. Передача энергии на большие расстояния осуществляется по воздушным линиям (ЛЭП), имеющим напряжение сотни киловольт — 110, 220, 500 кВ.

Более высокое напряжение (750 и 1150 кВ) применяется реже ввиду дороговизны оборудования и ряда технических сложностей. Повышение напряжения транспортировки электроэнергии позволяет снизить её потери.

Потребляется же большая часть электричества с напряжением 0,4 кВ. Максимальное напряжение конечных электрических устройств составляет не более нескольких киловольт. К таким устройствам относятся высоковольтные приводные двигатели мощных производственных механизмов, тяговые двигатели электровозов, питающихся от контактных электрических сетей.

Таким образом, электрическая энергия на своём пути от её производства до поступления к конечному потребителю несколько раз изменяет уровень напряжения. Эту работу выполняют силовые трансформаторы, установленные на электрических станциях и подстанциях распределительных сетей.

Измерительные трансформаторы используются в цепях измерения, защиты и контроля. Устройства этого типа осуществляют преобразование первичных значений тока и напряжения в пропорциональные им вторичные величины, необходимые для работы измерительных приборов, устройств защиты и автоматики.

Преобразование токовых величин осуществляется трансформаторами тока, для контроля уровня напряжения служат трансформаторы напряжения. Измерительные трансформаторы относятся к средствам измерений и подлежат периодической метрологической поверке, так же как все измерительные приборы.

Разделительные трансформаторы используются в тех случаях, когда необходимо обеспечить гальваническую развязку между отдельными участками электросетей.

Необходимость такого разделения может диктоваться требованиями электробезопасности. Например, таким способом осуществляется питание некоторых видов медицинского оборудования. В данном случае используется одно из основных свойств, присущих трансформатору — отсутствие гальванической связи между его обмотками.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Выбор и расчет мощности силовых трансформаторов

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Читайте так же:
Объемная плотность тепловой мощности тока в проводнике равна

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Мощность трансформатора по сечению магнитопровода

Токи в обмотках

Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Упрощенный расчет трансформатора

Рассчитывать трансформатор меня научили еще в профессиональном училище в 1972году.Расчет приблизительный, но его вполне достаточно для практических конструкций радиолюбителей. Все результаты расчета округляются в ту сторону, при которой обеспечивается наибольшая надежность. И так начнем. Вам например нужен трансформатор на 12В и ток 1А т.е. на мощность Р2 = 12В х 1А = 12ВА. Это мощность вторичной обмотки. Если обмоток не одна, то общая мощность равна сумме мощностей всех вторичных обмоток.

Так как КПД трансформатора примерно 85%, то мощность забираемая от первичной сети первичной обмоткой будет в 1,2раза больше мощности вторичных обмоток и равна Р1 = 1,2 х Р2 = 14,4ВА. Далее, исходя из полученной мощности можно примерно прикинуть, какой нужен сердечник. Sс=1,3√Р1, где Sс — площадь сечения сердечника, Р1 — мощность первичной обмотки.Данная формула справедлива для сердечников с Ш-образными пластинами и с обычным окном т.к. не учитывает площади последнего. От величины, которой в той же степени, что и от площади сердечника, зависит мощность трансформатора.

Для сердечников с уширенным окном этой формулой пользоваться нельзя. Так же в формулах заложена частота первичной сети 50Гц. Итак мы получили:Sс = 1,3 х √14,4 = 4,93см. Примерно 5 квадратных сантиметров. Можно конечно взять сердечник и побольше, что обеспечит бо’льшую надежность. Зная площадь сечения сердечника можно определить число витков на один вольт. W1вольт = 50/Sс это для нашего случая значит, чтобы получить на выходе трансформатора 12 вольт нам надо намотать W2 = U2 х 50/Sс= 12 х 50/5= 120 витков. Естественно количество витков первичной обмотки будет равно W1вольт х 220 вольт. Получаем 2200 витков.

Далее определяем диаметры проводов обмоток.

D2 = 0,7 х √I2 ; где I2 — ток вторичной обмотки в амперах. D2 = 0,7 х √1 = 0,7 мм. Для определения диаметра провода первичной обмотки находим ток через её протекающий. I1 = Р1/U1 = 0,065А. D1 = 0,7 х √0,065 = 0,18 мм. Вот и весь расчет. Главным недостатком его является то, что нет возможности определить уберутся ли обмотки в окне сердечника, в остальном все в порядке.

Читайте так же:
Выделившееся теплота постоянный ток

И еще чуть-чуть. От коэффициента «50» в формуле расчета количества витков на один вольт зависит общее количество витков обмоток, в конкретном случае, чем больше вы выбираете этот коэффициент, тем больше витков в первичной обмотке, тем меньше ток покоя трансформатора, тем меньше его разогрев, тем меньше внешнее магнитное поле рассеяния, тем меньше наводок на монтаж радиоаппаратуры. Это очень актуально, когда вы занимаетесь аналоговыми системами. Однажды, давным-давно, когда ревербераторы были еще магнитофонными, ко мне обратились друзья одного из ВИА. У ревербератора, который они приобрели был повышенный фон переменного напряжения и довольно сильный. Увеличение емкости электролитических конденсаторов в фильтре блока питания ни к чему не привело. Пробовал экранировать платы — ноль. Когда открутил транс и стал менять его расположение относительно монтажа, стало ясно, что причиной фона является его магнитное поле рассеяния. И вот тогда я и вспомнил про этот «50». Разобрал тр-р. Определил, что для расчета количества витков использовался коэффициент 38. Пересчитал тр-р с коэфф. равным 50, домотал к обмоткам необходимое число витков(благо место позволяло) и фон пропал. Так что, если вы занимаетесь УНЧ аппаратурой и тем более имеющей чувствительные входа, то советую выбирать этот коэффициент вплоть до 60.

И еще чуть-чуть. Это уже о надежности. Допустим, что вы имеете трансформатор с числом витков первичной обмотки на 220В для коэффициента равного 38, а я намотал число витков для коэффициента 55. Т.е. мое количество витков будет больше вашего примерно в полтора раза, значит и перегрузка сети в 220 х 1,45 = 318 вольт будет ему «по плечу». При увеличении этого коэффициента уменьшается напряжение между соседними витками и между слоями обмотки, a это уменьшает вероятность межвитковых и междуслоевых пробоев. Между тем его увеличение ведет к увеличению активного сопротивления обмоток, увеличению затрат на медь. Так что все должно быть в разумных пределах. Для расчета трансформаторов написано уже много программ и анализируя их, приходишь к выводу, что многие авторы выбирают минимальный коэффициент. Если у Вашего трансформатора, есть место для увеличения количества витков, обязательно увеличьте. До свидания. К.В.Ю.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Метки: Блоки питания, дтамера, Провода, Расчет, Самостоятельные расчеты, сечения сердечника

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

  • Автотрансформатор имеет один магнитопровод, на котором собран индуктор. Часть витков выполняет функции первичной обмотки, а остальные витки действуют как вторичные катушки.
  • Преобразователи напряжения работают в измерительных приборах и в цепях релейной защиты.
  • Преобразователи тока предназначены для гальванической развязки в сетях сигнализации и управления.
  • Импульсные трансформаторы применяются в вычислительной технике, автоматике, системах связи.
  • Силовые устройства работают с напряжением до 750 киловольт.

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

Источник информации:

Назначение и действие импульсного трансформатора

Импульсные трансформаторы применяются в системах связи и различных автоматических устройствах. Их основной функцией является внесение изменений в амплитуду и полярность импульсов. Основным условием нормальной работы этих устройств считается минимальное искажение передаваемых ими сигналов.

Принцип действия импульсного трансформатора заключается в следующем: при поступлении на его вход прямоугольных импульсов напряжения с определенным значением, в первичной обмотке происходит постепенное возникновение электрического тока и дальнейшее увеличение его силы. Подобное состояние, в свою очередь, приводит к изменению магнитного поля во вторичной обмотке и появлению электродвижущей силы. В этом случае сигнал практически не искажается, а небольшие потери тока ни на что не влияют.

При выходе трансформатора на проектную мощность, обязательно появляется отрицательная часть импульса. Его воздействие вполне возможно сделать минимальным, путем установки во вторичную обмотку простого диода. В результате, в этом месте импульс также максимально приблизится к прямоугольной конфигурации.

Главным отличием импульсного трансформатора от других аналогичных технических систем считается его исключительно ненасыщенный режим работы. Для изготовления магнитопровода применяется специальный сплав, обеспечивающий высокую пропускную способность магнитного поля.

Трансформатор тока: принцип работы и использование

Работа трансформатора тока (ТТ) основана на законе электромагнитной индукции, действующим в электрических и магнитных полях, изменяющихся по форме гармоник переменных синусоидальных величин.

ТТ применяются для измерения тока в приборах электроэнергетических систем. Они обеспечивают безопасность процедуры, так как позволяют изолировать первичную цепь с высоким напряжением от измерительной цепи. Кроме этого, трансформаторы позволяют выполнить моделирование определенных процессов и обеспечивают защиту электроустановок.

Принцип работы

Действие устройств базируется на явлении электромагнитной индукции. При подаче напряжения в ТТ через витки первой обмотки проходит переменный ток, который в дальнейшем формирует переменный магнитный поток. В результате большие величины преобразуются в те значения, которые безопасны и удобны для измерения.

Первичная обмотка запускается медленно и последовательно, чаще все она представляет собой алюминиевую или медную пластину, реже используются катушки. Для замыкания на нагрузку используется вторичная обмотка, в которой создается ток, его величина пропорциональна потоку в первом элементе.

Полученный ток проходит по сердечнику и перераспределяется во все обмотки, продуцируя в них электродвижущие силы. При включении в цепь последующих обмоток в их витках также образовывается вторичный ток.

Конструкция ТТ

Данные изделия можно встретить как в небольших электронных приборах, так и в значительных по объему энергетических установках. Различия между ними заключаются лишь в габаритах.

Читайте так же:
Выключатели для теплого пола eberle

Конструктивно трансформаторы состоят из двух элементов:

  • замкнутый магнитопровод (сердечник);
  • 2 и более обмотки (первичная и вторичные).

Все детали помещаются в специальный корпус, который служит как защита от механических повреждений.

Основные характеристики

Одним из важнейших параметров ТТ является номинальное напряжение, то есть максимальные значения напряжения, при которых устройство может корректно работать. Этот показатель указывается в паспорте трансформатора, средняя цифра составляет от 0,66 до 750 кВ.

К числу основных параметров ТТ относят и коэффициент трансформации. Он определяется как отношение первичного тока к вторичному.

Другая важная характеристика систем – номинальный ток первичной сети (протекающий по первичной обмотке). Значение может составлять от 1 А до 40 тысяч А. Показатели вторичного тока всегда равняются 1 А или 5 А, по заказу изготавливаются модели с 2 А и 2,5 А.

Еще два важных параметра устройств – это электродинамическая и термическая стойкость. Первая – характеризует максимальную амплитуду тока короткого замыкания. Если сказать проще, то это способность трансформатора противостоять разрушающему воздействию короткого замыкания.

Термическая стойкость – это максимальный показатель для короткого замыкания, которое система может выдержать за определенный промежуток времени и не пострадать от высоких температур.

Виды трансформаторов тока по назначению

Выделяют следующие разновидности:

  • Измерительные. Подобные устройства служат для передачи токов на специальные приборы измерения. Используются, если прямое подключение измерителей невозможно или небезопасно. ТТ рассчитываются таким образом, чтобы минимально влиять на первичную цепь и минимизировать любые искажения силы тока.
  • Промежуточные. Применяются в целях релейной защиты, обеспечивают изоляцию тока в первичной и вторичной обмотке.
  • Лабораторные. Отличаются повышенной точностью, предназначаются для моделирования определенной силы тока.
  • Защитные. Подключаются к токовым цепям защиты. Нередко номинальный ток таких систем существенно отличается от тока сети. Производители присваивают защитным устройствам определенный класс точности, что позволяет использовать их в качестве измерительных.

Классификация по способу исполнения

Отдельно стоит рассматривать способ исполнения ТТ, так как в этом случае также существует несколько вариантов. Выделяют следующие виды:

  • Тороидальные. Устанавливаются на кабели или шины, поэтому первичная обмотка им вообще не нужна. Первичный ток в этом случае протекает по шине, проходит через сердечник и фиксируется вторичной обмоткой.
  • Сухие. У таких изделий первичная обмотка не имеет изоляции, поэтому свойства получаемого тока зависят от используемого коэффициента преобразования.
  • Высоковольтные (масляные и газовые). Используются для дополнительной защиты от короткого замыкания, а для измерительных работ – не годятся.

Варианты установки трансформаторов

Помимо назначения и способа исполнения, трансформатор тока можно разделить на несколько видов в зависимости от способа монтажа. Выделяют следующие устройства:

  • Переносные. Мобильные модели, которые служат для диагностических и лабораторных испытаний.
  • Накладные. Применяются для установки сверху на проходные изоляторы, отличаются компактностью и имеют специальные крепления для монтажа.
  • Встраиваемые. Такие изделия встроены в электрические машины или коммутационные аппараты (например, в генераторы или похожие устройства).

Дополнительно выделяют трансформаторы для наружной установки (нужны для ОРУ – открытых распределительных устройств) и внутреннего монтажа (для ЗРУ – закрытых распределительных устройств).

Независимо от типа и способа монтажа, все устройства, кроме встроенных, имеют специальную контактную площадку. С ее помощью подсоединяется заземляющий проводник и зажим, что, в конечном счете, максимально упрощает процесс установки.

Механическое действие тока примеры

Предельная коммутационная способность циклического действия электрического реле — 117. Предельная коммутационная способность циклического действия электрического реле D. Schaltvermögen bei Schaltspielen E. Limiting cyclic capacity F. Pouvoir limite de manoeuvre Наибольшее значение тока, которое выходная цепь электрического… … Словарь-справочник терминов нормативно-технической документации

ГОСТ 19350-74: Электрооборудование электрического подвижного состава. Термины и определения — Терминология ГОСТ 19350 74: Электрооборудование электрического подвижного состава. Термины и определения оригинал документа: 48. Активное статическое нажатие токоприемника Нажатие токоприемника на контактный провод при медленном увеличении его… … Словарь-справочник терминов нормативно-технической документации

Химический источник тока — (аббр. ХИТ) источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию. Содержание 1 История создания 2 Принцип действия … Википедия

ГОСТ Р 52726-2007: Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним. Общие технические условия — Терминология ГОСТ Р 52726 2007: Разъединители и заземлители переменного тока на напряжение свыше 1 кВ и приводы к ним. Общие технические условия оригинал документа: 3.1 IP код: Система кодирования, характеризующая степени защиты, обеспечиваемые… … Словарь-справочник терминов нормативно-технической документации

Генератор переменного тока — Эта страница требует существенной переработки. Возможно, её необходимо викифицировать, дополнить или переписать. Пояснение причин и обсуждение на странице Википедия:К улучшению/23 октября 2012. Дата постановки к улучшению 23 октября 2012 … Википедия

Источники тока — устройства, преобразующие различные виды энергии в электрическую. По виду преобразуемой энергии И. т. условно можно разделить на химические и физические. Сведения о первых химических И. т. (гальванических элементах и аккумуляторах)… … Большая советская энциклопедия

Потенциал действия (action potential) — П. д. это самораспространяющаяся волна изменения мембранного потенциала, к рая последовательно проводится но аксону нейрона, перенося информ. от клеточного тела нейрона до самого конца его аксона. При нормальной передаче информ. в нервных сетях П … Психологическая энциклопедия

ПОДВИЖНОСТЬ НОСИТЕЛЕЙ ТОКА — величина, характеризующая электрические свойства (см.) и полупроводников (см.), равная отношению средней установившейся скорости движения носителей тока (электронов, уст ионов, дырок) в направлении действия электрического поля к напряжённости Е… … Большая политехническая энциклопедия

Аэротермические электростанции циклонного действия — Изобретение аэротермических электростанций связано с наблюдениями за тепловыми воздушными потоками, поднимающимися в атмосфере. Идеально видеть их ламинарными, но это трудно осуществимая задача, они всегда буду подвержены турбулентности, причем… … Википедия

Конспект по физике для 8 класса «Примеры действия электрического тока». Какие примеры иллюстрируют различные действия электрического тока.

Примеры действия электрического тока

Как известно, увидеть движущиеся заряды (электроны, ионы) мы не можем, так как они очень малы. Но как тогда можно обнаружить электрический ток?

ДЕЙСТВИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

При протекании электрического тока могут происходить различные явления, которые называются действиями электрического тока.

ТЕПЛОВОЕ ДЕЙСТВИЕ ТОКА

Электрический ток, протекая по проводам, вызывает их нагревание.

Присоединим к полюсам источника тока железную или никелевую проволоку. Замкнув ключ, можно наблюдать, как проволока провиснет, т. е. она нагреется и удлинится. Таким образом её можно даже раскалить докрасна.

Именно на тепловом действии тока основана работа различных бытовых нагревательных приборов, таких, как электрический чайник, электрические плитки, утюги и др. Нить лампочки раскаляется и начинает светиться.

ХИМИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Как показывает опыт, на электродах, опущенных в раствор электролитов, происходит выделение чистого вещества. Этот процесс называется электролизом. Например, пропуская ток через раствор медного купороса, можно выделить чистую медь.

Электрический ток в металлах не вызывает никаких химических изменений. Химическое действие тока происходит только в растворах и расплавах электролитов.

МАГНИТНОЕ ДЕЙСТВИЕ ТОКА

На большой железный гвоздь намотаем тонкий изолированный провод. Концы провода через ключ соединим с источником тока.

Если замкнуть ключ, то гвоздь намагнитится и будет притягивать к себе гвоздики, железные стружки, опилки. С прекращением тока в проводнике магнитные свойства гвоздя исчезнут.

Явление взаимодействия катушки с током и магнита лежит в основе работы прибора, называемого гальванометром. С помощью гальванометра можно судить о наличии тока и его направлении. Стрелка прибора связана с подвижной катушкой. Когда в катушке появляется электрический ток, стрелка отклоняется.

МЕХАНИЧЕСКОЕ ДЕЙСТВИЕ ТОКА

Металлическую рамку соединим с источником тока. При пропускании электрического тока через рамку она остаётся висеть неподвижно. Но если эту рамку поместить между полюсами подковообразного магнита, то она начнёт поворачиваться.

В этом опыте мы наблюдали механическое действие электрического тока, которое заключается в том, что электрический ток при протекании по рамке, помещённой между полюсами магнита, вызывает её вращение.

ДЕЙСТВИЕ ТОКА НА ЧЕЛОВЕКА

Тело человека является проводником электрического тока, который, проходя через организм человека, может производить тепловое, химическое, механическое, биологическое и другое воздействие.

При тепловом действии происходит перегрев и функциональное расстройство органов на пути прохождения тока, возникают ожоги.

Химическое действие тока выражается в электролизе жидкости в тканях организма, в том числе крови, и нарушении её физико-химического состава.

Механическое действие связано с сильным сокращением мышц, вплоть до их разрыва.

Биологическое действие тока выражается в раздражении и перевозбуждении нервной системы.

Действия электрического тока на организм человека используют в медицине.

Дефибрилляторы используют для восстановления ритма сердечной деятельности путём воздействия на организм кратковременных высоковольтных электрических разрядов. При радикулите, невралгии и некоторых других заболеваниях применяют гальванизацию: через тело человека пропускают слабый электрический ток, который оказывает болеутоляющее действие и улучшает кровообращение.

Вы смотрели Конспект по физике для 8 класса «Примеры действия электрического тока».

Механическое действие — ток

Механическое действие тока проявляется в расслоении тканей и даже отрывах частей тела. [1]

Динамической устойчивостью трансформатора тока называется способность его противостоять механическому действию тока короткого замыкания , протекающего в его первичной обмотке. [2]

Таким образом, мы можем считать, что математический метод, ранее примененный Ампером для описания механического действия токов , был распространен Ф. Е. Нейманом на индукцию токов. [3]

Электрические знаки представляют собой припухлость кожи, затвердевшей в виде мозоли желтовато-серого цвета с краями, очерченными белой или серой каймой. Электрознаки вызываются химическим или механическим действием тока и совершенно безболез ненны. [4]

Электрические знаки представляют собой припухлость кожи, затвердевшей в виде мозоли желтовато-серого цвета с краями, очерченными белой или серой каймой. Электрознаки вызываются химическим или механическим действием тока и совершенно безболезненны. [5]

Природа электрических знаков не выяснена. Есть предположение, что они вызываются химическим и механическим действием тока . [6]

Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава. Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови. Биологическое действие тока проявляется раздражением и возбуждением живых тканей организма, а также нарушением внутренних биологических процессов. [7]

Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении органической жидкости, в том числе крови, в нарушении ее физико-химического состава. Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также многовенного взрывоподобного образования пара из тканевой жидкости и крови. Биологическое действие тока проявляется раздражением и возбуждением живых тканей организма, а также нарушением внутренних биологических процессов. [9]

Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении различных жидкостей организма ( крови, лимфы и др.) на ионы и нарушении их физико-химического состава и свойств. Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взры-воподобного образования пара из тканевой жидкости и крови. Биологическое действие тока проявляется раздражением и возбуждением живых тканей организма, судорожным сокращением мышц, а также нарушением внутренних биологических процессов. [10]

Последствия электрического знака при больших его размерах могут быть очень серьезными. Глубокое поражение большою участка живой ткани может привести к нарушению функций пораженного органа, хотя электрические знаки безболезненны. Природа электрических знаков не выяснена. Есть предположение, что они вызываются химическим и механическим действием тока . [11]

Электрические знаки ( метки т о к а) возникают при хорошем контакте с токоведущими частями. Они представляют собой припухлость с затвердевшей в виде мозоли кожей серого или желтовато-белого цвета, круглой или овальной формы. Края электрического знака резко очерчены белой или серой каймой. Природа электрических знаков не выяснена. Предполагается, что они вызваны химическими и механическими действиями тока . [12]

Электрические знаки ( метки тока) возникают при хорошем контакте с токоведущими частями. Они представляют собой припухлость с затвердевшей в виде мозоли кожей серого или желтовато-белого цвета, круглой или овальной формы. Края электрического знака резко очерчены белой или серой каймой. Природа электрических знаков не выяснена. Предполагается, что они вызываются химическими и механическими действиями тока . [13]

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector