Azotirovanie.ru

Инженерные системы и решения
17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощность электрического тока

Мощность электрического тока

При подключении нагрузок необходимо учитывать энергетические возможности сети питания. Определенные ограничения принимают во внимание, выбирая подходящую проводку. Мощность тока – важнейший параметр, который применяют для решения разных практических задач в электротехнике.

Работа и мощность электрического тока, основные формулы

Что такое мощность электрического тока

Классическое понятие обозначает работу по перемещению заряда из точки F1 в точку F2. Мощность – это количество использованной энергии. Данная величина определяется не только расстоянием. Определенное значение имеют параметры заряда.

Формула мощности электрического тока

Для практических расчетов неудобно пользоваться базовым определением. Ниже приведены формулы, которые помогут узнать потребление электричества с использованием стандартных параметров источника питания и паспортных данных подключенных устройств. При отсутствии этих сведений в сопроводительной документации можно получить необходимые данные на официальном сайте производителя либо с помощью специальных измерений.

Мощность электрического тока через напряжение и ток

Так как разница потенциалов (F1-F2) соответствует напряжению (U), несложно сделать вывод о допустимости применения соотношений, определенных в законе Ома. Мощность (P) дополнительно характеризуется силой тока (I) в определенном участке цепи. Итоговое выражение:

Обозначение мощности по международной системе СИ – ватты (Вт). Для маленьких и больших величин пользуются кратными приставками: «милли-», «микро-», «мега-» и другими. Несложно понять, как обозначается мощность:

5 800 Вт = 5,8 киловатт = 5,8 кВт.

Мощность электрического тока через напряжение и сопротивление

По аналогии с предыдущими рассуждениями можно выразить мощность следующим образом:

Чему равна мощность электрического тока через ток и сопротивление

Путем несложных преобразований определяют потребление энергии следующим образом:

В этом и предыдущем разделе показана зависимость мощности от номинала подключенного резистора. При рассмотрении полной цепи учитывают внутреннее сопротивление источника и проводимость соединений.

Чтобы не ошибаться при расчетах, можно скопировать эту картинку с основными формулами

От чего зависит мощность тока

В реальных цепях перемещению электронов препятствует электрическое сопротивление, которое характеризует потери в проводнике. В схемах с источником переменного тока существенное значение приобретает синусоидальное изменение электрических параметров. Следующие данные помогут выбрать оптимальный метод расчета с учетом реальных условий.

Мгновенная электрическая мощность

В соответствии с названием, величину данного параметра определяют мгновенные значения измеряемых величин. Основное определение можно рассмотреть с учетом перемещения единичного элементарного заряда (q), которое выполняется за время Δt. На выполнение работы будет затрачена мощность эл тока PF1-F2 = U/ Δt или (U/ Δt) * q = U * (q/ Δt) c учетом перемещаемого заряда. Так как ток по стандартному определению равен заряду, который переходит из F1 в F2 (I = q/ Δt), несложно вывести итоговую формулу:

Принимая бесконечно малым интервал времени, можно получить соответствующее определение мощности для участка цепи:

Аналогичные выводы делают с учетом соответствующей величины сопротивления:

P (t) = (I (t))2 * R = (U(t))2/ R.

К сведению. Из последних формул понятно, что сопротивление не зависит от времени.

Дифференциальные выражения для электрической мощности

В реальных проводниках существенное значение имеют энергетические потери на единицу объема. Такие ситуации рассматривают с учетом плотности тока (j). Мощность (удельную) определяют по выражению Pудельн = (j2) * Rудельн. Для удобства оценки часто пользуются удельной проводимостью, которая обратна соответствующему сопротивлению.

Что такое мощность постоянного тока

Приведенные выше формулы без корректирующих коэффициентов применяют для расчета схем с подключением к источнику постоянного тока. С помощью обычного мультиметра при соответствующем положении переключателя определяют сопротивление подключенной нагрузки. Последовательным подключением измерительного прибора проверяют силу тока, параллельным – напряжение. Чтобы выяснить, сколько будет потреблять такая схема, пользуются формулами:

P = I * U или P = U2/ R = I2 * R.

Так можно измерять постоянный ток мультиметром

К сведению. При подключении АКБ в режиме зарядки направления тока в источнике и нагрузке совпадают. Мощность электрическая в этом случае потребляется нагрузкой. При противоположном направлении токов энергия поглощается источником ЭДС.

Мощность переменного тока

В таких цепях применять формулы для мгновенных величин нельзя, так как итоговое значение будет изменяться от минимума до максимума с частотой сети. В стандартной однофазной сети 220 V поддерживается синусоидальная форма сигнала 50 Гц.

Однако допустимо использование рассмотренных выше простых соотношений (P = U * I и других) при подключении нагрузки с резистивными характеристиками:

  • ТЭНов стиральных машин;
  • нагревательных спиралей инфракрасных излучателей;
  • лампочек с вольфрамовой нитью накаливания.

С помощью этого выражения выясняют, какая мощность будет выделяться в нагрузке.

Активная мощность

Ситуация меняется радикальным образом, если включается мощный электродвигатель или конденсатор. Подобные нагрузки формируют колебательный контур, который обменивается энергией с источником питания. Полезные функции в данном случае выполняются только активной компонентой (Pакт). Ее вычисляют следующим образом:

  • U * I – постоянный ток (переменный при резистивной нагрузке);
  • U * I * cos ϕ – для

Реактивная мощность

Этот параметр, несмотря на отсутствие полезной работы, следует учитывать для корректной оценки важных параметров сети. Дело в том, что проводники нагреваются при пропускании тока в любом направлении. Циклические энергетические воздействия при достаточно большой интенсивности:

  • разрушают жилы и защитные оболочки кабелей;
  • провоцируют короткое замыкание;
  • повреждают обмотки электроприводов и трансформаторы.

Реактивная составляющая определяется формулой:

Pреакт = U * I * sin ϕ.

Она принимает отрицательное (положительное) значение при подключении нагрузки с емкостными (индукционными) характеристиками, соответственно.

В чем измеряется мощность тока для подобных ситуаций, понятно из определения. Так как речь идет об изменении параметров электрического (магнитного) поля, итоговый результат обозначают вольт-амперами реактивными (единица измерения сокр. – вар).

Полная мощность

Если рассматриваемые величины выразить векторами, образуется треугольник. Длина сторон будет соответствовать потреблению энергии определенной составляющей. Угол между полной (Pполн) и активной мощностью (ϕ) используется в расчетах для вычислений. Общая формула:

Pполн = √((Pакт)2 + (Pреакт)2).

Комплексная мощность

Потребление энергии можно выразить при необходимости комплексными величинами. Используют базовые соотношения. Вместо сопротивления применяют импеданс.

Измерения

Как показано выше, некоторые исходные данные можно получить в ходе практических измерений. Ниже отмечены особенности типовых специализированных приборов.

Прямые замеры

Ваттметры выпускают в разных модификациях для сетей

380V. Соответствующие коррекции делают в процессе выполнения рабочих операций. Следует подключать щупы с учетом инструкций производителя и соответствующего расположения проводников. Как правило, в конструкциях приборов применяют две катушки с параллельным и последовательным подсоединением к нагрузке. Для повышенной точности пользуются профессиональными приборами «лабораторной» категории.

Косвенные замеры

Эти операции выполняют с применением мультиметров. Измеряют сопротивление, ток и напряжение, после чего вычисляют мощность.

Фазометры

С помощью этих приборов измеряют фазовый сдвиг между несколькими электрическими параметрами. Таким аппаратом можно определить cos ϕ, если паспортное значение отсутствует в сопроводительных документах к оборудованию.

Регулирование cos

Отмеченное выше негативное влияние реактивных составляющих компенсируют специальными дополнениями в общую электрическую схему. Расчеты выполняют с применением представленных формул.

Мощность некоторых электрических приборов

При оснащении современной квартиры часто приходится решать задачи по согласованию нагрузок в отдельных линиях. Необходимо правильно встраивать защитный автомат, чтобы предотвратить аварийные ситуации. Начинают с уточнения параметров проводки. Далее проверяют группы подсоединенной бытовой техники. Типичные параметры потребляемой мощности (Вт):

  • персональный компьютер – 170-1 250;
  • ноутбук – 40-280;
  • ЖКИ телевизор – 120-265;
  • утюг – 450-1850;
  • кондиционер – 1 200 – 2 500.

Какой автомат подойдет, определяют с учетом всех значимых факторов. Особое внимание уделяют нагрузкам с высокими значениями реактивной составляющей мощности.

Видео

Тепловая мощность электрического тока и ее практическое применение

Причина нагревания проводника кроется в том, что энергия движущихся в нем электронов (иными словами, энергия тока) при последовательном столкновении частиц с ионами молекулярной решётки металлического элемента преобразуется в тёплый тип энергии, или Q, так образуется понятие «тепловая мощность».

Работу тока измеряют с помощью международной системы единиц СИ, применяя к ней джоули (Дж), мощность тока определяют как «ватт» (Вт). Отступая от системы на практике, могут применять в том числе и внесистемные единицы, измеряющие работу тока. Среди них ватт-час (Вт — ч), киловатт-час (сокращённо кВт — ч). Например, 1 Вт — ч обозначает работу тока с удельной мощностью 1 ватт и длительностью времени на один час.тепловая мощность

Если электроны движутся по неподвижному проводнику из металла, в этом случае вся полезная работа вырабатываемого тока распределяется на нагревание металлической конструкции, и, исходя из положений закона сохранения энергии, это можно описать формулой Q=A=IUt=I 2 Rt=(U 2 /R)*t. Такие соотношения с точностью выражают известный закон Джоуля-Ленца. Исторически он впервые был определён опытным путём учёным Д. Джоулем в середине 19-го века, и в то же время независимо от него ещё одним учёным — Э.Ленцем. Практическое применение тепловая мощность нашла в техническом исполнении с изобретения в 1873 году русским инженером А. Ладыгиным обыкновенной лампы накаливании.удельная тепловая мощность

Тепловая мощность тока задействуется в целом ряде электрических приборов и промышленных установок, а именно, в тепловых измерительных приборах, нагревательного типа электрических печках, электросварочной и инвенторной аппаратуре, очень распространены бытовые приборы на электрическом нагревательном эффекте — кипятильники, паяльники, чайники, утюги.

тепловая мощность тока

Находит себя тепловой эффект и в пищевой промышленности. С высокой долей использования применяется возможность электроконтактного нагрева, что гарантирует тепловая мощность. Он обуславливается тем, что ток и его тепловая мощность, оказывая влияние на пищевой продукт, который обладает определённой степенью сопротивления, вызывает в нем равномерное разогревание. Можно привести в пример то, как производятся колбасные изделия: через специальный дозатор мясной фарш поступает в металлические формы, стенки которых одновременно служат электродами. Здесь обеспечивается постоянная равномерность нагрева по всей площади и объёму продукта, поддерживается заданная температура, сохраняется оптимальная биологическая ценность пищевого продукта, вместе с этими факторами длительность технологических работ и расход энергии остаются наименьшими.

Удельная тепловая мощность электрического тока (&omega-), иными словами — количество теплоты, что выделяется в единице объёма за определённую единицу времени, рассчитывается следующим образом. Элементарный цилиндрический объём проводника (dV), с поперечным проводниковым сечением dS, длиной dl, параллельной направлению тока, и сопротивлением составляют уравнения R=p(dl/dS), dV=dSdl.

Согласно определениям закона Джоуля-Ленца, за отведённое время (dt) во взятом нами объёме выделится уровень теплоты, равный dQ=I 2 Rdt=p(dl/dS)(jdS) 2 dt=pj 2 dVdt. В таком случае &omega-=(dQ)/(dVdt)=pj 2 и, применяя здесь закон Ома для установления плотности тока j=&gamma-E и соотношение p=1/&gamma-, мы сразу получаем выражение &omega-=jE= &gamma-E 2. Оно в дифференциальной форме даёт понятие о законе Джоуля-Ленца.

Мощность постоянного тока

Мощность постоянного токаМощность – это работа, произведенная за единицу времени. Электрическая мощность равна произведению тока на напряжение: P=U∙I. Отсюда можно вывести другие формулы для мощности:

Единицу измерения мощности получим, подставив в формулу единицы измерения напряжения и тока:

Единица измерения электрической мощности, равная 1 ВА, называется ватом (Вт). Название вольт-ампер (ВА) используется в технике переменного тока, но только для измерения полной и реактивной мощности.

Единицы измерения электрической и механической мощности связаны следующими соотношениями:

1 Вт =1/9,81 кГ•м/сек ≈1/10 кГ•м/сек;

1 кГ•м/сек =9,81 Вт ≈10 Вт;

1 л.с. =75 кГ•м/сек =736 Вт;

1 кВт =102 кГ•м/сек =1,36 л.с.

Если не учитывать неизбежных потерь энергии, то двигатель мощностью 1 кВт может перекачивать каждую секунду 102 л воды на высоту 1 м или 10,2 л воды на высоту 10 м.

1. Нагревательный элемент электрической печи на мощность 500 Вт и напряжение 220 В выполнен из проволоки высокого сопротивления. Рассчитать сопротивление элемента и ток, который через него проходит (рис. 1).

Ток найдем по формуле электрической мощности P=U∙I,

откуда I=P/U=(500 Bm)/(220 B)=2,27 A.

Сопротивление рассчитывается по другой формуле мощности: P=U^2/r,

откуда r=U^2/P=(220^2)/500=48400/500=96,8 Ом.

Схема к примеру 1

Схема к примеру 1

2. Какое сопротивление должна иметь спираль (рис. 2) плитки при токе 3 А и мощности 500 Вт?

Плитка

Для этого случая применим другую формулу мощности: P=U∙I=r∙I∙I=r∙I^2;

отсюда r=P/I^2 =500/3^2 =500/9=55,5 Ом.

3. Какая мощность превращается в тепло при сопротивлении r=100 Ом, которое подключено к сети напряжением U=220 В (рис. 3)?

Схема к примеру 3

4. В схеме на рис. 4 амперметр показывает ток I=2 А. Подсчитать сопротивление потребителя и электрическую мощность, расходуемую в сопротивлении r=100 Ом при включении его в сеть напряжением U=220 В.

Схема к примеру 4

P=U∙I=220∙2=440 Вт, или P=U^2/r=220^2/110=48400/110=440 Вт.

5. На лампе указано лишь ее номинальное напряжение 24 В. Для определения остальных данных лампы соберем схему, показанную на рис. 5. Отрегулируем реостатом ток так, чтобы вольтметр, подключенный к зажимам лампы, показывал напряжение Uл=24 В. Амперметр при этом показывает ток I=1,46 А. Какие мощность и сопротивление имеет лампа и какие потери напряжения и мощности возникают на реостате?

Рисунок и схема к примеру

Мощность лампы P=Uл∙I=24∙1,46=35 Вт.

Ее сопротивление rл=Uл/I=24/1,46=16,4 Ом.

Падение напряжения на реостате Uр=U-Uл=30-24=6 В.

Потери мощности в реостате Pр=Uр∙I=6∙1,46=8,76 Вт.

6. На щитке электрической печи указаны ее номинальные данные (P=10 кВт; U=220 В).

Определить, какое сопротивление представляет собой печь и какой ток проходит через нее при работе P=U∙I=U^2/r;

r=U^2/P=220^2/10000=48400/10000=4,84 Ом; I=P/U=10000/220=45,45 А.

Нагревательные элементы электрической печи

7. Каково напряжение U на зажимах генератора, если при токе 110 А его мощность равна 12 кВт (рис. 7)?

Так как P=U∙I, то U=P/I=12000/110=109 В.

8. На схеме на рис. 8 показана работа электромагнитной токовой защиты. При определенном токе электромагнит ЭМ, который удерживается пружиной П, притянет якорь, разомкнет контакт К и разорвет цепь тока. В нашем примере токовая защита разрывает токовую цепь при токе I≥2 А. Сколько ламп по 25 Вт может быть одновременно включено при напряжении сети U=220 В, чтобы ограничитель не сработал?

Защита срабатывает при I=2 А, т. е. при мощности P=U∙I=220∙2=440 Вт.

Разделив общую мощность одной лампы, получим: 440/25=17,6.

Одновременно могут гореть 17 ламп.

9. Электрическая печь имеет три нагревательных элемента на мощность 500 Вт и напряжение 220 В, соединенных параллельно.

Каковы общее сопротивление, ток и мощность при работе печи (рис.91)?

Общая мощность печи P=3∙500 Вт =1,5 кВт.

Результирующий ток I=P/U=1500/220=6,82 А.

Результирующее сопротивление r=U/I=220/6,82=32,2 Ом.

Ток одного элемента I1=500/220=2,27 А.

Сопротивление одного элемента: r1=220/2,27=96,9 Ом.

10. Подсчитать сопротивление и ток потребителя, если ваттметр показывает мощность 75 Вт при напряжении сети U=220 В (рис.10).

Так как P=U^2/r, то r=U^2/P=48400/75=645,3 Ом.

Ток I=P/U=75/220=0,34 А.

11. Плотина имеет перепад уровней воды h=4 м. Каждую секунду через трубопровод на турбину попадает 51 л воды. Какая механическая мощность превращается в генераторе в электрическую, если не учитывать потерь (рис. 11)?

Механическая мощность Pм=Q∙h=51 кГ/сек ∙4 м =204 кГ•м/сек.

Отсюда электрическая мощность Pэ=Pм:102=204:102=2 кВт.

12. Какую мощность должен иметь двигатель насоса, перекачивающего каждую секунду 25,5 л воды с глубины 5 м в резервуар, расположенный на высоте З м? Потери не учитываются (рис. 12).

Общая высота подъема воды h=5+3=8 м.

Механическая мощность двигателя Pм=Q∙h=25,5∙8=204 кГ•м/сек.

Электрическая мощность Pэ=Pм:102=204:102=2 кВт.

13. Гидроэлектростанция получает из водохранилища на одну турбину каждую секунду 4 м3 воды. Разница между уровнями воды в водохранилище и турбине h=20 м. Определить мощность одной турбины без учета потерь (рис. 13).

Механическая мощность протекающей воды Pм=Q∙h=4∙20=80 т/сек•м; Pм=80000 кГ•м/сек.

Электрическая мощность одной турбины Pэ=Pм:102=80000:102=784 кВт.

14. У двигателя постоянного тока с параллельным возбуждением обмотка якоря и обмотка возбуждения соединены параллельно. Обмотка якоря имеет сопротивление r=0,1 Ом, а ток якоря I=20 А. Обмотка возбуждения имеет сопротивление rв=25 Ом, а ток возбуждения равен Iв=1,2 А. Какая мощность теряется в обеих обмотках двигателя (рис. 14)?

Потери мощности в обмотке якоря P=r∙I^2=0,1∙20^2=40 Вт.

Потери мощности в обмотке возбуждения

Общие потери в обмотках двигателя P+Pв=40+36=76 Вт.

15. Электроплитка на напряжение 220 В имеет четыре переключаемые ступени нагрева, что достигается путем различных включений двух нагревательных элементов с сопротивлениями r1 и r2, как это показано на рис. 15.

Определить сопротивления r1 и r2, если первый нагревательный элемент имеет мощность 500 Вт, а второй 300 Вт.

Так как мощность, выделяемая в сопротивлении, выражается формулой P=U∙I=U^2/r, то сопротивление первого нагревательного элемента

а второго нагревательного элемента r2=U^2/P2 =220^2/300=48400/300=161,3 Ом.

В положении ступени IV сопротивления соединяются последовательно. Мощность электроплитки в этом положении равна:

P3=U^2/(r1+r2 )=220^2/(96,8+161,3)=48400/258,1=187,5 Вт.

В положении ступени I нагревательные элементы соединены параллельно и результирующее сопротивление равно: r=(r1∙r2)/(r1+r2)=(96,8∙161,3)/(96,8+161,3)=60,4 Ом.

Мощность плитки в положении ступени I: P1=U^2/r=48400/60,4=800 Вт.

Эту же мощность получим, сложив мощности отдельных нагревательных элементов.

16. Лампа с вольфрамовой нитью рассчитана на мощность 40 Вт и напряжение 220 В. Какие сопротивление и ток имеет лампа в холодном состоянии и при рабочей температуре 2500 °С?

Мощность лампы P=U∙I=U^2/r.

Отсюда сопротивление нити лампы в горячем состоянии rt=U^2/P=220^2/40=1210 Ом.

Сопротивление холодной нити (при 20 °С) определим по формуле rt=r∙(1+α∙∆t),

Через нить лампы в горячем состоянии проходит ток I=P/U=40/220=0,18 А.

Ток при включении равен: I=U/r=220/118=1,86 А.

При включении ток примерно в 10 раз больше, чем ток горячей лампы.

17. Каковы потери напряжения и мощности в медном контактном проводе электрифицированной железной дороги (рис. 16)?

Провод имеет сечение 95 мм2. Двигатель электропоезда потребляет ток 300 А на расстоянии 1,5 км от источника тока.

Потеря (падение) напряжения в линии между точками 1 и 2 Uп=I∙rп.

Сопротивление контактного провода rп=(ρ∙l)/S=0,0178∙1500/95=0,281 Ом.

Падение напряжения в контактном проводе Uп=300∙0,281=84,3 В.

Напряжение Uд на зажимах двигателя Д будет на 84,3 В меньше, чем напряжение U на зажимах источника Г.

Падение напряжения в контактном проводе во время движения электропоезда меняется. Чем дальше электропоезд удаляется от источника тока, тем длиннее линия, а значит, больше ее сопротивление и падение напряжения в ней. Ток по рельсам возвращается к заземленному источнику Г. Сопротивление рельсов и земли практически равно нулю.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Основные электрические величины

Рассмотрим основные электрические величины, которые мы изучаем сначала в школе, затем в средних и высших учебных заведениях. Все данные для удобства сведем в небольшую таблицу. После таблицы будут приведены определения отдельных величин, на случай возникновения каких-либо непониманий.

ВеличинаЕдиница измерения в СИНазвание электрической величины
qКл — кулонзаряд
RОм – омсопротивление
UВ – вольтнапряжение
IА – амперСила тока (электрический ток)
CФ – фарадЕмкость
LГн — генриИндуктивность
sigmaСм — сименсУдельная электрическая проводимость
e08,85418781762039*10 -12 Ф/мЭлектрическая постоянная
φВ – вольтПотенциал точки электрического поля
PВт – ваттМощность активная
QВар – вольт-ампер-реактивныйМощность реактивная
SВа – вольт-амперМощность полная
fГц — герцЧастота

Существуют десятичные приставки, которые используются в названии величины и служат для упрощения описания. Самые распространенные из них: мега, мили, кило, нано, пико. В таблице приведены и остальные приставки, кроме названных.

Десятичный множительПроизношениеОбозначение (русское/международное)
10 -30куэктоq
10 -27ронтоr
10 -24иоктои/y
10 -21зептоз/z
10 -18аттоa
10 -15фемтоф/f
10 -12пикоп/p
10 -9нанон/n
10 -6микромк/μ
10 -3миллим/m
10 -2сантиc
10 -1децид/d
10 1декада/da
10 2гектог/h
10 3килок/k
10 6мегаM
10 9гигаГ/G
10 12тераT
10 15петаП/P
10 18экзаЭ/E
10 21зетаЗ/Z
10 24йоттаИ/Y
10 27роннаR
10 30куэккаQ

Сила тока в 1А – это величина, равная отношению заряда в 1 Кл, прошедшего за 1с времени через поверхность (проводник), к времени прохождения заряда через поверхность. Для протекания тока необходимо, чтобы цепь была замкнутой.

Сила тока измеряется в амперах. 1А=1Кл/1c

В практике встречаются

Электрическое напряжение – разность потенциалов между двумя точками электрического поля. Величина электрического потенциала измеряется в вольтах, следовательно, и напряжение измеряется в вольтах (В).

1Вольт – напряжение, которое необходимо для выделения в проводнике энергии в 1Ватт при протекании по нему тока силой в 1Ампер.

В практике встречаются

Электрическое сопротивление – характеристика проводника препятствовать протеканию по нему электрического тока. Определяется как отношение напряжения на концах проводника к силе тока в нем. Измеряется в омах (Ом). В некоторых пределах величина постоянная.

1Ом – сопротивление проводника при протекании по нему постоянного тока силой 1А и возникающем при этом на концах напряжении в 1В.

Из школьного курса физики все мы помним формулу для однородного проводника постоянного сечения:

R=ρlS – сопротивление такого проводника зависит от сечения S и длины l

где ρ – удельное сопротивление материала проводника, табличная величина.

Между тремя вышеописанными величинами существует закон Ома для цепи постоянного тока.

Ток в цепи прямо пропорционален величине напряжения в цепи и обратно пропорционален величине сопротивления цепи – закон Ома.

Электрической емкостью называется способность проводника накапливать электрический заряд.

Емкость измеряется в фарадах (1Ф).

1Ф – это емкость конденсатора между обкладками которого возникает напряжение 1В при заряде в 1Кл.

В практике встречаются

Индуктивность – это величина, характеризующая способность контура, по которому протекает электрический ток, создавать и накапливать магнитное поле.

Индуктивность измеряется в генри.

1Гн – величина, равная ЭДС самоиндукции, возникающей при изменении величины тока в контуре на 1А в течение 1секунды.

В практике встречаются

Электрическая проводимость – величина, показывающая способность тела проводить электрический ток. Обратная величина сопротивлению.

Удельная тепловая мощность тока единица измерения

Задание 9 № 9092

При напряжении 120 В электрическая лампа в течение 0,5 мин потребила 900 Дж энергии. Чему равна сила тока в лампе? Ответ запишите в амперах.

Мощность есть отношение работы ко времени в течение которого работа совершалась. В данном случае работа равна потреблённой энергии тогда

С другой стороны, мощность электрического тока равна произведению напряжения на силу тока, откуда

Задания Д16 № 419

При напряжении 120 В электрическая лампа в течение 0,5 мин потребила 900 Дж энергии. Сила тока в лампе равна

Мощность есть отношение работы ко времени в течение которого работа совершалась. В данном случае работа равна потреблённой энергии тогда

С другой стороны, мощность электрического тока равна произведению напряжения на силу тока, откуда

Правильный ответ указан под номером 2.

Задание 9 № 9091

На велосипеде установлен генератор, вырабатывающий электрическую энергию для двух последовательно соединённых ламп. В каждой лампе сила тока 0,3 А при напряжении на каждой лампе 6 В. Чему равна работа тока генератора за 2 часа? Ответ запишите в килоджоулях.

Электрическая мощность равна произведению напряжения на силу тока. Работа равна произведению мощности на промежуток времени. Таким образом на одной лампе совершается работа тока: 0,3 А · 6 В · 7200 с = 12960 Дж.

Следовательно, работа тока генератора на двух лампах равна 2 · 12960 Дж = 25,92 кДж.

Задания Д16 № 149

Электродвигатель постоянного тока работает при напряжении 220 В и силе тока 40 А. Полезная мощность двигателя 6,5 кВт. Чему равен КПД электродвигателя?

Коэффициент полезного действия определяется как отношение полезной мощности к затрачиваемой мощности. Найдём затрачиваемую мощность:

Следовательно, КПД равен

Правильный ответ указан под номером 2.

Задания Д16 № 230

На велосипеде установлен генератор, вырабатывающий электрическую энергию для двух последовательно соединённых ламп. В каждой лампе сила тока 0,3 А при напряжении на каждой лампе 6 В. Чему равна работа тока генератора за 2 часа?

Электрическая мощность равна произведению напряжения на силу тока. Работа равна произведению мощности на промежуток времени. Таким образом на одной лампе совершается работа тока: 0,3 А · 6 В · 7200 с = 12960 Дж.

Следовательно, работа тока генератора на двух лампах равна 2 · 12960 Дж = 25,92 кДж.

Правильный ответ указан под номером 3.

Задание 22 № 943

Две лампы, рассчитанные на одинаковое напряжение, но потребляющие различную мощность, включены в электрическую сеть последовательно. Какая лампа будет горeть ярче? Ответ поясните.

Мощность лампы рассчитывается по формуле Поскольку лампочки рассчитаны на одинаковое напряжение, чем больше номинальная мощность лампы, тем меньше её сопротивление. Через две лампы, включенные последовательно, будет протекать одинаковый ток, следовательно, мощность будет больше на той лампе, у которой сопротивление больше. Таким образом, лампа меньшей номинальной мощности, включенная последовательно с лампой большей номинальной мощности, будет гореть ярче.

Аналоги к заданию № 943: 5765 Все

Задание 25 № 945

Имеется два электрических нагревателя одинаковой мощности — по 400 Вт. Сколько времени потребуется для нагревания 1 л воды на 40 °С, если нагреватели будут включены в электросеть последовательно? Потерями энергии пренебречь.

Для нагревания массы воды m = ρV потребуется количество теплоты

Эта энергия выделится на нагревателях за время τ:

где — общая мощность последовательно соединённых нагревателей.

Запишем уравнение теплового баланса: Q = E, и выразим искомое время:

Нагреватель представляет собой резистор, на котором при прохождении тока выделяется тепло. Как и у любого другого электрического сопротивления, мощность тепловыделения зависит от величины протекающего тока по закону Джоуля — Ленца . С учетом закона Ома для участка цепи мощность нагревателя можно переписать в следующем виде: , здесь — приложенное к нагревателю напряжение. Возникает естественный вопрос: в условии указано, что мощность нагревателя равна 400 Вт, с другой стороны, только что было сказано, что мощность зависит от того, какое напряжение приложено к нагревателю, как же так? Ответ заключается в следующем: мощность в 400 Вт будет вырабатываться нагревателем только при подключении в сеть со стандартным напряжением (220 В). Если бы нагреватели подключали параллельно, то к каждому было бы приложено напряжение . В случае последовательного подключения, с учетом того, что нагреватели одинаковые, на каждый нагреватель будет приходиться напряжение . Мощность квадратично зависит от напряжения. Следовательно, при последовательном соединении мощность каждого нагревателя станет в 4 раза меньше, чем указано в его технической характеристике, то есть всего 100 Вт. Поскольку у нас два нагревателя, их суммарная мощность будет равна .

голоса
Рейтинг статьи
Читайте так же:
Как вычислить тепловую мощность тока
Ссылка на основную публикацию
Adblock
detector