Вещества плохо проводящие теплоту или электрический ток
Электролиты
Электролиты — в химии это вещества, растворы или расплавы, которые при растворении проводят электрический ток и выделяют ионы.
Эти растворы проводят электричество из-за подвижности:
- положительно заряженных ионов (называются катионами)
- и отрицательно заряженных ионов (называются анионами).
В питании это минералы, которые содержатся в крови, поте и моче. Когда минералы растворяются в жидкости, они образуют электролиты, т.е. положительные или отрицательные ионы, которые используются в метаболических процессах организма.
Метаболизм — процесс поддержания жизни организма, при котором калории от потребляемой пищи превращаются в энергию
Сильные и слабые электролиты
Сильные электролиты быстро и полностью ионизируются при растворении, и в растворе не образуются нейтральные молекулы. Примеры сильных электролитов:
- NaCl (хлорид натрия),
- HNO3 (азотная кислота),
- HClO3 (хлорноватая кислота),
- CaCl2 (хлорид кальция) и др.
У слабых электролитов при растворении в воде ионизируются лишь небольшие фракции молекул, т.е. в их растворах присутствует некое количество нейтральных молекул. Примеры слабых электролитов:
- большинство органических кислот и оснований,
- NH4OH (аммиак),
- H2CO3 (угольная кислота),
- CH3COOH (уксусная кислота), и др.
Как определить сильный и слабый электролит?
Сильные электролиты полностью ионизируются, т.к. основными компонентами раствора сильных электролитов являются ионы, и степень диссоциации такого электролита стремится к 1 (т.е. степень диссоциации α ≈ 1). Слабые электролиты ионизируются только частично, т.е. степень диссоциации такого электролита стремится к 0 (или α < 1).
В таблице растворимости можно посмотреть степень диссоциации электролита.
- растворимые соли,
- многие неорганические кислоты,
- основания щелочных и щелочноземельных металлов.
- почти все органические кислоты и вода,
- некоторые неорганические кислоты,
- нерастворимые гидроксиды металлов.
Электролиты и неэлектролиты
Все электролиты при растворении в воде дают ионы и проводят электрический ток. К электролитам относятся:
- кислоты,
- основания,
- соли (почти все).
Неэлектролиты — это вещества, растворы или расплавы которых не проводят электрический ток. К неэлектролитам относятся:
- многие органические вещества (сахара, спирты, углеводы, углеводороды, бензол, альдегиды, простые и сложные эфиры, и пр.)
- вещества, в молекулах которых существуют ковалентные неполярные или малополярные связи.
Электролиты в организме
Электролиты — это минералы, которые несут электрический заряд при растворении в воде. В питании этот термин относится к минералам, которые содержатся в крови, поте и моче.
Эти минералы, растворяясь в жидкости, образуют электролиты, т.е. положительные или отрицательные ионы, которые используются в метаболических процессах.
Урок 34. Электрический ток в жидкостях
Электролит – это проводящая электрический ток жидкость (растворы кислот, щелочей, солей и расплавленные соли).
Электролитическая диссоциация – распад молекул электролита на ионы при растворении в воде или расплавлении.
Степень диссоциации – отношение числа молекул, распавшихся на ионы, к общему числу молекул, растворённого вещества. Степень диссоциации измеряется в долях или процентах.
Электропроводимость электролитов – ионная. Прохождение электрического тока связано с переносом вещества.
Явление электролиза – это выделение на электродах веществ, входящих в электролиты, в процессе окислительно-восстановительных реакций, которое возникает при прохождении через электролиты электрического тока.
Закон электролиза:
$m = m_0 cdot N = frac
$m = k cdot I cdot t$
Закон электролиза определяет массу вещества, выделяемого на электроде при электролизе за время прохождения электрического тока.
k – электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.
m – масса выделившегося вещества,
NA – число Авогадро,
M – молярная масса,
I – сила тока,
e – заряд электрона,
n – число ионов.
Применение электролиза:
— получение чистых металлов (очистка от примесей);
— гальваностегия (никелирование, хромирование и т. д.);
— гальванопластика, т. е. получение отслаиваемых покрытий (рельефных копий).
Лабораторная работа «Определение элементарного заряда методом электролиза»
Техническое применения электролиза
Гальваностегия – покрытие металлических изделий тонким слоем другого металла (никелирование, хромирование, серебрение, золочение и т. д.) с целью предохранения от окисления и придания изделию привлекательного внешнего вида. Предмет, подлежащий покрытию, тщательно очищают, хорошо обезжиривают и помещают в качестве катода в электролитическую ванну, содержащую раствор соли того металла, которым должен быть покрыт данный предмет. Анодом служит пластинка из того же металла. Для более равномерного покрытия обычно применяют две пластинки в качестве анода, помещая предмет между ними.
Гальванопластика – электролитическое изготовление копий с рельефных предметов (медалей, гравюр, барельефов и т. д.). С рельефного предмета делают восковый или иной слепок. Затем поверхность слепка покрывают тонким слоем графита, чтобы она стала проводящей. В таком виде слепок используется в качестве катода, который опускают в электролитическую ванну с раствором медного купороса. Анодом служит медная пластинка. Когда на слепке нарастет достаточно толстый слой меди, электролиз прекращают и воск осторожно удаляют. Остается точная медная копия оригинала.
В полиграфической промышленности такие копии (стереотипы) получают с оттиска набора на пластичном материале (матрица), осаждая на матрицах толстый слой железа или другого материала. Это позволяет воспроизвести набор в нужном количестве экземпляров. Если раньше тираж книги ограничивался числом оттисков, которые можно получить с одного набора (при печатании набор стирается), то использование стереотипов позволяет значительно увеличить тираж.
Правда, в настоящее время с помощью электролиза получают стереотипы только для книг высококачественной печати и с большим числом иллюстраций.
Осаждая металл на длинный цилиндр, получают трубы без шва.
Процесс получения отслаиваемых покрытий был разработан русским учёным Якоби Б.С., который в 1836 г. применил этот способ для изготовления полых фигур для Исаакиевского собора (в Санкт-Петербурге).
Рафинирование меди
Медь является лучшим материалом для изготовления проводников, но для этого она должна быть лишена каких бы то ни было примесей. Очищение меди от примесей называется рафинированием (очисткой) меди. Массивные куски (толстые листы) неочищенной меди, полученной при выплавке из руды, являются анодом, а тонкие пластинки из чистой меди – катодом. Процесс происходит в больших ваннах с водным раствором медного купороса. При электролизе медь анода растворяется; примеси, содержащие ценные и редкие металлы, выпадают на дно в виде осадка (шлама), а на катоде оседает чистая медь. Таким же образом производят рафинирование некоторых других металлов.
Получение алюминия
При помощи электролиза получают алюминий. Для этого подвергают электролизу не растворы солей этого металла, а его расплавленные оксиды.
В угольные тигли насыпают глинозём (оксид алюминия Аl2O3), полученный путем переработки бокситов – руд, содержащих алюминий. Тигель служит катодом. Анодом являются угольные стержни, вставленные в тигель. Сначала угольные стержни опускают до соединения с тиглем и пропускают сильный ток. Глинозём при прохождении тока нагревается и расплавляется. После этого угли поднимают, ток проходит через жидкость и производит электролиз. Расплавленный алюминий, выделяющийся при электролизе, опускается на дно тигля (катод), откуда его через особое отверстие выпускают в формы для отливки.
Описанный способ получения алюминия сделал его дешевым и наряду с железом самым распространенным в технике и быту металлом.
Путем электролиза расплавленных солей в настоящее время получают также натрий, калий, магний, кальций и другие металлы.
Электролиз используется для гальваностегии, гальванопластики, рафинирования меди, получения алюминия и других целей.
III. Диэлектрики – вещества, плохо проводящие электрический ток
Примеры диэлектриков: дистиллированная вода, инертные газы, слюда, парафин, бумага.
Познакомимся с некоторыми из электрических свойств диэлектриков. Опыты с электрометром (ослабление внешнего поля диэлектриком). Объяснение по рисунку. Е = ; Е ‘ = ; Ед = Е – Е ‘ . Электростатическое поле внутри диэлектрика (термин. введен Фарадеем для обозначения веществ, в которые проникает электрическое поле), диэлектрическая проницаемость среды.
Частичная поляризация диэлектрика. Можно ли, как в опыте с проводниками, "снять" электрический заряд с поверхности диэлектрика, прикоснувшись к нему рукой? Можно ли зарядить эбонитовую палочку, прикоснувшись ею к борну высоковольтного выпрямителя?
Молекула воды (электрический диполь). Полярные диэлектрики. Дипольный момент: Р = qℓ.
Почему при высоком давлении диэлектрик становится металлом?
Диэлектрики во внешнем электростатическом поле (демонстрация модели электрического диполя). Силы, действующие на диполь в однородном электрическом поле: .
Полной ориентации диполей препятствует тепловое движение молекул диэлектрика. Чем больше напряженность внешнего поля, тем сильнее поворот диполей (поляризация), поэтому диэлектрическая проницаемость вещества остается неизменной. При низких температурах она должна возрастать?! Но возрастает и вязкость диэлектрика!
Электреты (титанит кальция, тонкие полимерные пленки лавсана, фторопласта, поликарбоната) — аналог магнита. Сегнетоэлектрики. Почему электреты из сегнетоэлектрика обладают малым временем жизни? Как получают электреты? Электретный материал помещают между электродами, нагревают, выдерживают под напряжением 10 – 20 кВ, не снимая напряжения, охлаждают, потом снимают напряжение и извлекают электрет. Обоснуйте данную технологию получения электрета. Предложите другие способы получения электретов. Микрофон на электретах (закороченный электрет), газовая зажигалка и прибор, вызывающий электрошок.
Пробой диэлектрика(вещество и пробивная напряженность поля): воздух (3·10 6 Н/Кл), трансформаторное масло (18·10 Н/Кл), парафин (30·10 6 Н/Кл), слюда (200·10 6 Н/Кл).
Демонстрация электрического пробоя воздуха и оргстекла. Тепловой пробой (разогрев диэлектрика). У какого из материалов наилучшие изолирующие свойства?
IV. Задачи:
1. Какого размера должна быть проводящая сфера, чтобы удержать в воздушной среде заряд 1 Кл?
2. Стеклянная пластинка расположена перпендикулярно однородному электрическому полю напряженностью 10 4 Н/Кл. Найти напряженность поля в пластинке, а также плотность связанных зарядов, возникающих на поверхностях пластинки.
3. По бесконечной пластинке из диэлектрика толщиной d равномерно распределен электрический заряд с объемной плотностью ρ. Определите напряженность электрического поля на расстоянии х от центра пластины. Диэлектрическая проницаемость ε.
4. Диполь, состоящий из двух разноименных зарядов величиной 1,6·10 –19 Кл и массой 70·10 –27 кг каждый, расположенных на расстоянии 10 нм, удерживаются в однородном электрическом поле с напряженностью 20 кВ/м перпендикулярно силовым линиям. Какую максимальную угловую скорость будет иметь диполь, если его отпустить?
1. Почему крупицы манки (диэлектрические стрелки) ориентируются вдоль силовых линий электрического поля?
2. Наэлектризованный металлический шарик опустили на дно сухой стеклянной пробирки и поднесли ее к электроскопу. Разойдутся ли листочки электроскопа?
3. В результате пробоя твердого диэлектрика он оказывается непригодным к дальнейшему применению, а жидкие и газообразные диэлектрики могут подвергаться многократному испытанию на прочность. Почему?
4. Когда обкладки плоского конденсатора не параллельны друг другу, то диэлектрик между ними будет перемещаться, если конденсатор зарядить? В какую сторону?
5. Как ведет себя электрический диполь в неоднородном электрическом поле или почему заряженное тело притягивает мелкие кусочки бумаги?
Вещества плохо проводящие теплоту или электрический ток
Чтобы разобраться в таком явлении как электропроводность вещества, сначала нужно понять, что такое электрический ток, так как эти два явления неразрывно связаны друг с другом. Электрический ток представляет собой упорядоченное движение заряженных частиц, которое может происходить под воздействием электрического поля.
Главная особенность электрического тока – его широкое применение в энергетике. Это – единственный вид энергии, который можно свободно передавать на большие расстояние без какой-либо дополнительной переработки.
Рассматривая передачу энергии, нужно затронуть тему проводников, по которым передаётся ток. Заряженными частицами могут быть электроны, ионы в электролитах и газах, в полупроводниках такими частицами становятся электроны и дырки. Данная особенность напрямую зависит от структуры вещества или тела. При этом каждое тело обладает собственной электрической проводимостью.
Что такое электрическая проводимость?
Простыми словами электрическая проводимость или электропроводность – это способность или свойство вещества или тела проводить электрический ток, который создаётся под действием электрического поля.
Это физическая величина, которую можно измерить, на основе которой даётся характеристика того или иного проводника. Чем выше эта характеристика, тем лучше тело проводит ток.
Как уже было сказано, проводниками электрического тока выступают свободные заряженные частицы, а значит, электропроводность зависит от количества таких свободных частиц. Чем большей будет концентрация свободных заряженных частиц, тем лучше вещество или тело будет проводить электрический ток.
Основные группы проводников
Так как разные тела располагают разным количеством свободных частиц, электропроводимость у всех отличается. По этому показателю тела можно разделить на три основные группы.
К первой группе относятся проводники, у них самая высокая проводимость. Такие тела лучше всего способны проводить электрический ток. Однако проводники также могут быть двух видов, отличие заключается в особенностях протекания тока.
1. Первый вид проводников – металлы. У них электронная проводимость, так как ток протекает за счёт большого количества свободных электронов;
2. Второй вид проводников с высокой электропроводимостью – различные кислоты, щелочные растворы и соли. Другое их название – электролиты. В них свободными заряженными частицами являются ионы. Отсюда и название – ионная проводимость.
Стоит отметить, что существуют вещества смешанного типа, то есть, заряженными частицами в них могут быть как электроны, так и ионы. Это могут быть некоторые газы.
Высокая электропроводность металлов легко объяснима при рассмотрении их структуры. В атомах металлов валентные электроны могут легко перемещаться от одного атома к другому, так как они слабо связаны с ядром. Таким образом, образуется электрический ток.
Электрическое сопротивление и скорость протекания тока
Электропроводимость тела напрямую зависит от сопротивления вещества, а её величина будет обратнопропорциональна показателю сопротивления.
Электрическое сопротивление – это свойство любого проводника; величина сопротивления равна отношению напряжения к силе протекающего тока. Можно сказать, что чем выше напряжение подаваемого тока, тем выше скорость протекания тока, однако сопротивление проводника снижает этот показатель.
Следует добавить, что электрического поле, порождающее упорядоченное движение частиц, а, следовательно, и электрический ток, распространяется в пространстве со скоростью света. То есть, электрический ток протекает всегда со скоростью 300 тысяч километров в секунду.
В чём же тогда особенность скорости движения? Дело в том, что скорость протекания тока равна скорости света, однако отдельные электроны могут двигаться с разной скоростью – от нескольких миллиметров до нескольких сантиметров в секунду. Это, разумеется, не очень большая скорость.
Почему же, существует подобная разница и как объяснить скорость распространения тока? Напряжение тока как раз определяет скорость движения отдельных электронов – несколько миллиметров или сантиметров в секунду.
Дело в том, что каждый отдельный электрон движется в одном огромном потоке электронов, которые полностью заполняют проводник. И каждый электрон постоянно взаимодействует с другими электронами. Так происходит во время прохождения электрического тока.
Поэтому отдельный электрон движется крайне медленно, однако, скорость распространения энергии в электрическом проводнике будет очень высока. Соответственно, чем больше будет количество свободных частиц, тем лучше будет их взаимодействие, а значит, выше будет скорость распространения тока и скорость передачи электрической энергии.
§ 3.1. ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ РАЗЛИЧНЫХ ВЕЩЕСТВ
Электрический ток проводят твердые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?
По способности веществ проводить электрический ток их можно разделить на несколько групп.
К другой группе относятся вещества, в которых мало свободных заряженных частиц. Поэтому сила тока в них даже при большой разности потенциалов очень мала. Эти вещества называют изоляторами или диэлектриками.
Деление веществ на проводники и изоляторы условно. В природе нет идеальных изоляторов. Даже лучшие из известных изоляторов имеют некоторое, небольшое по сравнению с проводниками число свободных заряженных частиц. В диэлектриках концентрация свободных зарядов не превышает 1017 м-3, а в металлах концентрация свободных электронов порядка 1028 м-3.
К проводникам прежде всего следует отнести все металлы, среди которых наилучшей электропроводностью обладают серебро, медь, алюминий. Металлические проводники находят широчайшее применение в передаче электроэнергии от источников тока к потребителям. Эти проводники используются также в генераторах, электродвигателях, трансформаторах, электроизмерительных приборах и т. д.
Наряду с металлами хорошими проводниками являются водные растворы или расплавы электролитов и ионизованный газ — плазма. При определенных условиях и в вакууме может существовать электрический ток. Так, в вакуумных электронных приборах электрический ток образуют потоки электронов, поступающие из специальных устройств.
К числу хороших изоляторов относятся янтарь, фарфор, резина, стекло, парафин. Жидкими диэлектриками являются керосин, минеральное (трансформаторное) масло, лаки, чистая (дистиллированная) вода и др.
Лучший изолятор — вакуум.
Однако при некоторых условиях, например в сильном электрическом поле, происходит расщепление молекул диэлектрика на ионы, и вещество, которое при отсутствии электрического поля или в слабом поле было диэлектриком, становится проводником. Напряженность электрического поля, при которой начинается ионизация молекул диэлектрика, называется пробивной напряженностью (электрической прочностью) диэлектрика. Поэтому при использовании диэлектриков в электрических установках наибольшее значение напряженности электрического поля выбирают равным допускаемой напряженности. Допускаемая напряженность обычно в несколько раз меньше пробивной.
В качестве примера приведем значения пробивной напряженности для некоторых диэлектриков: воздух — 3000 кВ/м, масло трансформаторное — 10 ООО кВ/м, фарфор — 8000. 15 000 кВ/м, слюда — 80 000. 200 000 кВ/м.
Кроме проводников и диэлектриков имеется группа веществ (в основном твердых), проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электрический ток, чтобы их назвать проводниками, и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников. К ним относятся кремний, германий, селен и многие другие вещества. Существуют и жидкие полупроводники.
Для полупроводников характерно резкое изменение электропроводности с изменением температуры. При низких температурах число свободных зарядов в них мало и по своим свойствам эти вещества близки к диэлектрикам. С повышением температуры число свободных носителей заряда увеличивается настолько, что эти вещества уже можно отнести к хорошим проводникам.
Электропроводность полупроводников зависит также от падающего на них света, напряженности и направления электрического поля и особенно резко изменяется при введении в их состав незначительного количества примесей.
До недавнего времени полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, можно даже сказать, что в радиотехнике произошла революция, когда сначала теоретически, а затем экспериментально была открыта и изучена легко осуществимая возможность управления электрической проводимостью полупроводников.
Полупроводники нашли широкое применение в электротехнике, радиотехнике, в электронно-вычислительных машинах, автоматике и т. д.
Для передачи электрической энергии по проводам применяют проводники.
Полупроводники применяют в качестве элементов, пре-образующих ток в радиоприемниках, вычислительных машинах и т. д.